Nutrient Enrichment Regulates the Growth and Physiological Responses of Saccharina japonica to Ocean Acidification

2020 ◽  
Vol 19 (4) ◽  
pp. 895-901
Author(s):  
Yaoyao Chu ◽  
Yan Liu ◽  
Jingyu Li ◽  
Qiaohan Wang ◽  
Qingli Gong
2018 ◽  
Vol 14 (7) ◽  
pp. 20180371 ◽  
Author(s):  
Maggie D. Johnson ◽  
Robert C. Carpenter

Ocean acidification (OA) and nutrient enrichment threaten the persistence of near shore ecosystems, yet little is known about their combined effects on marine organisms. Here, we show that a threefold increase in nitrogen concentrations, simulating enrichment due to coastal eutrophication or consumer excretions, offset the direct negative effects of near-future OA on calcification and photophysiology of the reef-building crustose coralline alga, Porolithon onkodes . Projected near-future pCO 2 levels (approx. 850 µatm) decreased calcification by 30% relative to ambient conditions. Conversely, nitrogen enrichment (nitrate + nitrite and ammonium) increased calcification by 90–130% in ambient and high pCO 2 treatments, respectively. pCO 2 and nitrogen enrichment interactively affected instantaneous photophysiology, with highest relative electron transport rates under high pCO 2 and high nitrogen. Nitrogen enrichment alone increased concentrations of the photosynthetic pigments chlorophyll a , phycocyanin and phycoerythrin by approximately 80–450%, regardless of pCO 2 . These results demonstrate that nutrient enrichment can mediate direct organismal responses to OA. In natural systems, however, such direct benefits may be counteracted by simultaneous increases in negative indirect effects, such as heightened competition. Experiments exploring the effects of multiple stressors are increasingly becoming important for improving our ability to understand the ramifications of local and global change stressors in near shore ecosystems.


2019 ◽  
Vol 9 ◽  
Author(s):  
Lei Jiang ◽  
Ya-Juan Guo ◽  
Fang Zhang ◽  
Yu-Yang Zhang ◽  
Laurence John McCook ◽  
...  

2015 ◽  
Vol 12 (6) ◽  
pp. 1671-1682 ◽  
Author(s):  
J. Meyer ◽  
U. Riebesell

Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.


2019 ◽  
Vol 15 (2) ◽  
pp. 20180662 ◽  
Author(s):  
Antonio Di Franco ◽  
Antonio Calò ◽  
Khalil Sdiri ◽  
Carlo Cattano ◽  
Marco Milazzo ◽  
...  

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ p CO 2 /pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO 2 levels) can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO 2 seep increased at the high- p CO 2 site. Also, we detected that slower-growing individuals living at ambient p CO 2 levels tend to have larger otoliths at the same somatic length (i.e. higher relative size of otoliths to fish body length) than faster-growing conspecifics living under high p CO 2 conditions, with this being attributable to the so-called ‘growth effect’. Our findings suggest the possibility of contrasting OA effects on fish fitness, with higher somatic growth rate and possibly higher survival associated with smaller relative size of otoliths that could impair fish auditory and vestibular sensitivity.


Sign in / Sign up

Export Citation Format

Share Document