Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger Nassarius conoidalis

2015 ◽  
Vol 106 ◽  
pp. 51-60 ◽  
Author(s):  
Haoyu Zhang ◽  
Paul K.S. Shin ◽  
S.G. Cheung
2015 ◽  
Vol 73 (3) ◽  
pp. 814-824 ◽  
Author(s):  
Haoyu Zhang ◽  
Paul K. S. Shin ◽  
Siu Gin Cheung

Abstract In the past few years, there has been a dramatic increase in the number of studies revealing negative or positive effects of ocean acidification on marine organisms including corals, echinoderms, copepods, molluscs, and fish. However, scavenging gastropods have received little attention despite being major players in energy flow, removing carrion, and recycling materials in marine benthic communities. The present study investigated the physiological responses (ingestion, absorption rate and efficiency, respiration, and excretion) and scope for growth (SfG) of an intertidal scavenging gastropod, Nassarius festivus, to the combined effects of ocean acidification (pCO2 levels: 380, 950, and 1250 µatm), salinity (10 and 30 psu), and temperature (15 and 30°C) for 31 d. Low salinity (10 psu) reduced ingestion, absorption rate, respiration, excretion, and SfG of N. festivus throughout the exposure period. Low temperature (15°C) had a similar effect on these parameters, except for SfG at the end of the exposure period (31 d). However, elevated pCO2 levels had no effects in isolation on all physiological parameters and only weak interactions with temperature and/or salinity for excretion and SfG. In conclusion, elevated pCO2 will not affect the energy budget of adult N. festivus at the pCO2 level predicted to occur by the Intergovernmental Panel on Climate Change (IPCC) in the year 2300.


2021 ◽  
Vol 758 ◽  
pp. 143587
Author(s):  
Patricio H. Manríquez ◽  
Claudio P. González ◽  
Mylene Seguel ◽  
M. Roberto Garcia-Huidobro ◽  
Karin B. Lohrmann ◽  
...  

2018 ◽  
Vol 75 (6) ◽  
pp. 2117-2128 ◽  
Author(s):  
Samuel P S Rastrick ◽  
Victoria Collier ◽  
Helen Graham ◽  
Tore Strohmeier ◽  
Nia M Whiteley ◽  
...  

Abstract Climate change driven alterations in salinity and carbonate chemistry are predicted to have significant implications particularly for northern costal organisms, including the economically important filter feeders Mytilus edulis and Ciona intestinalis. However, despite a growing number of studies investigating the biological effects of multiple environmental stressors, the combined effects of elevated pCO2 and reduced salinity remain comparatively understudied. Changes in metabolic costs associated with homeostasis and feeding/digestion in response to environmental stressors may reallocate energy from growth and reproduction, affecting performance. Although these energetic trade-offs in response to changes in routine metabolic rates have been well demonstrated fewer studies have investigated how these are affected by changes in feeding plasticity. Consequently, the present study investigated the combined effects of 26 days’ exposure to elevated pCO2 (500 µatm and 1000 µatm) and reduced salinity (30, 23, and 16) on the energy available for growth and performance (Scope for Growth) in M. edulis and C. intestinalis, and the role of metabolic rate (oxygen uptake) and feeding plasticity [clearance rate (CR) and absorption efficiency] in this process. In M. edulis exposure to elevated pCO2 resulted in a 50% reduction in Scope for Growth. However, elevated pCO2 had a much greater effect on C. intestinalis, with more than a 70% reduction in Scope for Growth. In M. edulis negative responses to elevated pCO2 are also unlikely be further affected by changes in salinity between 16 and 30. Whereas, under future predicted levels of pCO2C. intestinalis showed 100% mortality at a salinity of 16, and a >90% decrease in Scope for Growth with reduced biomass at a salinity of 23. Importantly, this work demonstrates energy available for production is more dependent on feeding plasticity, i.e. the ability to regulate CR and absorption efficiency, in response to multiple stressors than on more commonly studied changes in metabolic rates.


2019 ◽  
Vol 9 ◽  
Author(s):  
Lei Jiang ◽  
Ya-Juan Guo ◽  
Fang Zhang ◽  
Yu-Yang Zhang ◽  
Laurence John McCook ◽  
...  

2015 ◽  
Vol 12 (6) ◽  
pp. 1671-1682 ◽  
Author(s):  
J. Meyer ◽  
U. Riebesell

Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.


Sign in / Sign up

Export Citation Format

Share Document