Mathematical modeling and full-scale shaking table tests for multi-curve buckling restrained braces

2009 ◽  
Vol 8 (3) ◽  
pp. 359-371 ◽  
Author(s):  
C. S. Tsai ◽  
Yungchang Lin ◽  
Wenshin Chen ◽  
H. C. Su
Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chen-Tsung Yang ◽  
Ching-Pei Tsou

Since 1970’s, many types of braces have been developed without buckling under large compressive forces called the buckling restrained brace BRB, or unbonded brace. Recently, many investigators have made a lot of efforts to look into the behaviors of the buckling restrained brace under quasi-static forces, but few experimental results about shaking table tests of a structure with buckling restrained braces have been published. Therefore, in this study, a series of shaking table tests were carried out in the National Center for Research on Earthquake Engineering, and the issue is focused on observing the seismic responses of a full-scale three-story steel structure with multi-curved reinforced buckling restrained braces subjected to earthquake ground motions. Experimental results show that most column shear forces and displacements had been reduced by the RBRB devices. In addition, the absolute accelerations had also been favorably diminished during earthquakes. It can be proven that the proposed device is suitable for applications of seismic mitigation for structures.


2006 ◽  
Vol 35 (13) ◽  
pp. 1653-1675 ◽  
Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

2016 ◽  
pp. 2417-2424
Author(s):  
T. Hanazato ◽  
H. Seno ◽  
Y Niitsu ◽  
H. Imai ◽  
T. Narafu ◽  
...  

Author(s):  
Hiroshi NAKAZAWA ◽  
Yutaka SAWADA ◽  
Tetsuya ODA ◽  
Tomohiro KOBAYASHI ◽  
Seita KOBAYASHI ◽  
...  

Author(s):  
C. S. Tsai ◽  
B. J. Chen ◽  
T. C. Chiang

Conventional earthquake resistant designs depend on strengthen and ductility of the structural components to resist induced forces and to dissipate seismic energy. However, this can produce permanent damage to the joints as well as the larger interstory displacements. In recently years, many studies on structural control strategies and devices have been developed and applied in U. S. A., Europe, Japan, and New Zealand. The rubber bearing belongs to one kind of the earthquake-proof ideas of structural control technologies. The installation of rubber bearings can lengthen the natural period of a building and simultaneously reduce the earthquake-induced energy trying to impart to the building. They can reduce the magnitude of the earthquake-induced forces and consequently reduce damage to the structures and its contents, and reduce danger to its occupants. This paper is aimed at studying the mechanical behavior of the stirrup rubber bearings (SRB) and evaluating the feasibility of the buildings equipped with the stirrup rubber bearings. Furthermore, uniaxial, biaxial, and triaxial shaking table tests are conducted to study the seismic response of a full-scale three-story isolated steel structure. Experimental results indicate that the stirrup rubber bearings possess higher damping ratios at higher strains, and that the stirrup rubber bearings provide good protection for structures. It has been proved through the full-scale tests on shaking table that the stirrup rubber bearing is a very promising tool to enhance the seismic resistibility of structures.


2019 ◽  
Vol 34 (0) ◽  
pp. 153-160
Author(s):  
Tsuyoshi NISHI ◽  
Mihiro TANI ◽  
Natsuki HAYASHI ◽  
Tatsuro KUBOTA ◽  
Hiroyuki KYOKAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document