soil retaining walls
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 24)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 11 (18) ◽  
pp. 8681
Author(s):  
Xiaoguang Cai ◽  
Shaoqiu Zhang ◽  
Sihan Li ◽  
Honglu Xu ◽  
Xin Huang ◽  
...  

Most of the damage to reinforced retaining walls is caused by excessive deformation; however, there is no calculation method for deformation under static and dynamic loads in the design codes of reinforced soil retaining walls. In this paper, by collecting the measured displacement data from four actual projects, four indoor prototype tests and two indoor model tests under a total of 10 static load conditions, and comparing the calculation results with seven theoretical methods, the results show that the FHWA method is more applicable to the permanent displacement prediction of indoor prototype tests and that the CTI method is more applicable to the permanent displacement prediction of actual projects and indoor model tests. Two yield acceleration calculation methods and four permanent displacement calculation formulas were selected to calculate the displacement response of two reinforced soil test models under seismic loads and compared with the measured values, and the results showed that the Ausilio yield acceleration solution method was better. When the input peak acceleration ranges from 0.1 to 0.6 g, the Richards and Elms upper limit method is used, and when the input peak acceleration is 0.6–1.0 g, the Newmark upper limit method can predict the permanent displacement of the retaining wall more accurately.


Author(s):  
Guangqing Yang ◽  
Yunfei Zhao ◽  
Zhijie Wang ◽  
He Wang

To investigate the performance of a reinforced soil retaining wall during service for a passenger-dedicated railway, long-term remote observation testing of the back-to-back geogrid reinforced retaining wall (BBGRSW) of Qing-Rong passenger-dedicated railway in Shandong Province was conducted for 60 months. The performance of the reinforced retaining wall was investigated after construction, and the lateral earth pressure of the reinforced soil wall was analyzed. The vertical stress on the wall and tension on the geogrid were measured using pressure cells and flexible deformation gauges, thereby resulting in the distribution of data and changes in the service period. The test results show that the pressure and deformation of the wall are almost stable. It was determined that the lateral earth pressure on the back of the wall panel was approximately 119.2% of the completion time during the 60 months after construction. The vertical stress on the reinforced soil retaining wall remained approximately stable 60 months post-construction. The maximum strain of the measured geogrids accounted for less than 30% of the peak strain. Moreover, the deformation of the wall was relatively small, which indicated that both sides of the wall remained in good condition. These research results can serve as a reference for the design optimization of reinforced soil retaining walls for high-speed railways.


Sign in / Sign up

Export Citation Format

Share Document