scholarly journals FULL-SCALE SHAKING TABLE TESTS TO CONFIRM IMPROVED EARTHQUAKE RESISTANCE FOLLOWING THE INSTALLATION OF ENERGY-ABSORBING DEVICES TO REINFORCED CONCRETE FRAMES FAILING TO MEET CURRENT SEISMIC STANDARDS

Author(s):  
Takafumi MIYAMA ◽  
Masanori IIBA ◽  
Sin-ichi IIZUKA ◽  
Shinji MASE ◽  
Satsuya SODA
2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 233-240
Author(s):  
Junaid Akbar ◽  
Naveed Ahmad ◽  
Bashir Alam

Shaking table tests were performed on five one-third reduced scale two storey reinforced concrete (RC) moment resisting frames having construction defects (using low strength concrete without confining ties in beam-column joints, larger tie spacing, and reduced longitudinal and transverse reinforcements). The deficient frames were observed to have severe joint damageability, resulting in joint panel cover spalling and core concrete crushing. Haunch retrofitting technique was adopted to upgrade the seismic behaviour of deficient RC frames. Additional four deficient RC frames were built and retrofitted with steel haunch; both axially stiffer and deformable with energy dissipation, fixed to the beam-column connections to reduce shear demand on joint panels. The as-built and retrofitted frame seismic response modification factor (R) was calculated and compared to evaluate the viability of the haunch retrofitting technique. The haunch retrofitting technique increased the lateral stiffness and strength of the structure, resulting in the increase of structure overstrength. The retrofitting increased R factor by sixty percent to one hundred percent. The presented results indicate that the technique can significantly enhance the seismic performance of deficient RC frames, particularly against the frequent and rare earthquake events.


2020 ◽  
Vol 87 (1) ◽  
pp. 92-100 ◽  
Author(s):  
N.V. FEDOROVA ◽  
◽  
FAN DINH GUOK ◽  
NGUYEN THI CHANG ◽  
◽  
...  

Author(s):  
Seung-Jae Lee ◽  
Tae-Sung Eom ◽  
Eunjong Yu

AbstractThis study analytically investigated the behavior of reinforced concrete frames with masonry infills. For the analysis, VecTor2, a nonlinear finite element analysis program that implements the Modified Compression Field Theory and Disturbed Stress Field Model, was used. To account for the slip behavior at the mortar joints in the masonry element, the hyperbolic Mohr–Coulomb yield criterion, defined as a function of cohesion and friction angle, was used. The analysis results showed that the lateral resistance and failure mode of the infilled frames were significantly affected by the thickness of the masonry infill, cohesion on the mortar joint–brick interface, and poor mortar filling (or gap) on the masonry boundary under the beam. Diagonal strut actions developed along two or three load paths on the mortar infill, including the backstay actions near the tension column and push-down actions near the compression columns. Such backstay and push-down actions increased the axial and shear forces of columns, and ultimately affect the strength, ductility, and failure mode of the infilled frames.


Sign in / Sign up

Export Citation Format

Share Document