Seismic stability of jointed rock slopes under obliquely incident earthquake waves

2018 ◽  
Vol 17 (3) ◽  
pp. 527-539 ◽  
Author(s):  
Jingqi Huang ◽  
Mi Zhao ◽  
Chengshun Xu ◽  
Xiuli Du ◽  
Liu Jin ◽  
...  
2021 ◽  
Vol 11 (12) ◽  
pp. 5447
Author(s):  
Xiaona Zhang ◽  
Gang Mei ◽  
Ning Xi ◽  
Ziyang Liu ◽  
Ruoshen Lin

The discrete element method (DEM) can be effectively used in investigations of the deformations and failures of jointed rock slopes. However, when to appropriately terminate the DEM iterative process is not clear. Recently, a displacement-based discrete element modeling method for jointed rock slopes was proposed to determine when the DEM iterative process is terminated, and it considers displacements that come from rock blocks located near the potential sliding surface that needs to be determined before the DEM modeling. In this paper, an energy-based discrete element modeling method combined with time-series analysis is proposed to investigate the deformations and failures of jointed rock slopes. The proposed method defines an energy-based criterion to determine when to terminate the DEM iterative process in analyzing the deformations and failures of jointed rock slopes. The novelty of the proposed energy-based method is that, it is more applicable than the displacement-based method because it does not need to determine the position of the potential sliding surface before DEM modeling. The proposed energy-based method is a generalized form of the displacement-based discrete element modeling method, and the proposed method considers not only the displacement of each block but also the weight of each block. Moreover, the computational cost of the proposed method is approximately the same as that of the displacement-based discrete element modeling method. To validate that the proposed energy-based method is effective, the proposed method is used to analyze a simple jointed rock slope; the result is compared to that achieved by using the displacement-based method, and the comparative results are basically consistent. The proposed energy-based method can be commonly used to analyze the deformations and failures of general rock slopes where it is difficult to determine the obvious potential sliding surface.


2018 ◽  
Vol 96 ◽  
pp. 189-202 ◽  
Author(s):  
J. Meng ◽  
J. Huang ◽  
S.W. Sloan ◽  
D. Sheng

2013 ◽  
Author(s):  
Jingjing Meng ◽  
Ping Cao ◽  
Ke Zhang

2012 ◽  
Vol 04 (03) ◽  
pp. 1250036 ◽  
Author(s):  
AILAN CHE ◽  
XIURUN GE

The seismic behavior of rock slopes accompanied with discontinuity is heavily governed by the geometrical distribution and mechanical properties of discontinuity. Especially, high and steep rock slopes, which are dominated by sub-vertical discontinuity, are likely to collapse due to toppling failure and it causes serious damage to structures surrounding the slopes. Ten thousands of landslides, collapses and other geological disasters occurred in the Wenchuan Ms 8.0 great earthquake on May 12, 2008 in Sichuan province of central China. The field survey during the disaster investigations indicated that it shows the tensile failure close to the top of slop and the shear failure below it. However, it is difficult to assess quantitatively toppling failure potential. In order to clarify mechanism of toppling failure in rock slopes and evaluation on seismic stability, 2D joint elements around each rock column is proposed to simulate the discontinuity of rock slope, which is different from Goodman joint and composed with normal spring Kn and shear spring Ks without volume. By a nonlinear numerical FEM analysis, the dynamic response of the rock slopes could demonstrate the landslide mechanism. Coupled with the effect of amplification on the toppling, the seismic horizontal acceleration at the top of slopes is often large, and then coursed inertia force would far exceed the tensile strength of rock mass. Eventually, the opening and sliding of joint elements occurs on the slope are identified based on the nonlinear characteristics of the joint elements. The result shows that a toppling failure could have occurred on the slope and the sliding plane also could be observed, which shows agreement with the existing investigation flexural toppling failure during the Wenchuan great earthquake.


Sign in / Sign up

Export Citation Format

Share Document