Strategies for Early Stroke Recovery: What Lies Ahead?

Author(s):  
Tomoko Kitago ◽  
Randolph S. Marshall
Keyword(s):  
2021 ◽  
Vol 102 (10) ◽  
pp. e101-e102
Author(s):  
Sandra Deluzio ◽  
Kelly Jordan ◽  
Delaney Metcalf ◽  
Amelia Tenberg ◽  
Mona Bahouth

2018 ◽  
Vol 19 (1) ◽  
pp. 53-57
Author(s):  
Ana Maria Bumbea ◽  
Roxana Carmen Dumitraşcu ◽  
Bogdan Ştefan Bumbea ◽  
Anca Emanuela Muşetescu ◽  
Otilia Rogoveanu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 26 (26) ◽  
pp. 3115-3121
Author(s):  
Jun Yang ◽  
Jingjing Zhao ◽  
Xu Liu ◽  
Ruixia Zhu

LncRNAs (long non-coding RNAs) are endogenous molecules, involved in complicated biological processes. Increasing evidence has shown that lncRNAs play a vital role in the post-stroke pathophysiology. Furthermore, several lncRNAs were reported to mediate ischemia cascade processes include apoptosis, bloodbrain barier breakdown, angiogenesis, microglial activation induced neuroinflammation which can cause neuron injury and influence neuron recovery after ischemic stroke. In our study, we first summarize current development about lncRNAs and post-stroke, focus on the regulatory roles of lncRNAs on pathophysiology after stroke. We also reviewed genetic variation in lncRNA associated with functional outcome after ischemic stroke. Additionally, lncRNA-based therapeutics offer promising strategies to decrease brain damage and promote neurological recovery following ischemic stroke. We believe that lncRNAs will become promising for the frontier strategies for IS and can open up a new path for the treatment of IS in the future.


2021 ◽  
pp. 154596832110193
Author(s):  
Emily J. Dalton ◽  
Leonid Churilov ◽  
Natasha A. Lannin ◽  
Dale Corbett ◽  
Bruce C. V. Campbell ◽  
...  

Despite an increase in the amount of published stroke recovery research, interventions have failed to markedly affect the trajectory of recovery poststroke. We argue that early-phase research to systematically investigate dose is an important contributor to advance the science underpinning stroke recovery. In this article, we aim to ( a) define the problem of insufficient use of a systematic approach to early-phase, multidimensional dose articulation research and ( b) propose a solution that applies this approach to design a multidimensional phase I trial to identify the maximum tolerated dose (MTD). We put forward a design template as a decision support tool to increase knowledge of how to develop a phase I dose-ranging trial for nonpharmaceutical stroke recovery interventions. This solution has the potential to advance the development of efficacious stroke recovery interventions, which include activity-based rehabilitation interventions.


2021 ◽  
Vol 1 (6) ◽  
Author(s):  
Fatima Fanna Mairami ◽  
Narelle Warren

2021 ◽  
Vol 4 (2) ◽  
pp. 32
Author(s):  
Heather A. Feldner ◽  
Christina Papazian ◽  
Keshia M. Peters ◽  
Claire J. Creutzfeldt ◽  
Katherine M. Steele

Arm recovery varies greatly among stroke survivors. Wearable surface electromyography (sEMG) sensors have been used to track recovery in research; however, sEMG is rarely used within acute and subacute clinical settings. The purpose of this case study was to describe the use of wireless sEMG sensors to examine changes in muscle activity during acute and subacute phases of stroke recovery, and understand the participant’s perceptions of sEMG monitoring. Beginning three days post-stroke, one stroke survivor wore five wireless sEMG sensors on his involved arm for three to four hours, every one to three days. Muscle activity was tracked during routine care in the acute setting through discharge from inpatient rehabilitation. Three- and eight-month follow-up sessions were completed in the community. Activity logs were completed each session, and a semi-structured interview occurred at the final session. The longitudinal monitoring of muscle and movement recovery in the clinic and community was feasible using sEMG sensors. The participant and medical team felt monitoring was unobtrusive, interesting, and motivating for recovery, but desired greater in-session feedback to inform rehabilitation. While barriers in equipment and signal quality still exist, capitalizing on wearable sensing technology in the clinic holds promise for enabling personalized stroke recovery.


Sign in / Sign up

Export Citation Format

Share Document