neuron injury
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 59)

H-INDEX

29
(FIVE YEARS 6)

Author(s):  
Shaosong Xi ◽  
Yunguang Wang ◽  
Chenghao Wu ◽  
Weihua Peng ◽  
Ying Zhu ◽  
...  

BackgroundGut–microbiota–brain axis links the relationship between intestinal microbiota and sepsis-associated encephalopathy (SAE). However, the key mediators between them remain unclear.MethodsMemory test was determined by Water maze. Intestinal flora was measured by 16S RNA sequencing. Neurotransmitter was detected by high-performance liquid chromatography (HPLC). Histopathology was determined by H&E, immunofluorescence (IF), and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining. Flow cytometry was employed to determine the proportion of macrophages.ResultsFecal microbiota transplantation (FMT) relieved hippocampus impairment of SAE rats by inhibiting inflammation cytokine secretion, the expression of IBA-1 and neurotransmitter disturbance, and cell apoptosis and autophagy, accompanied by the reduced M1 polarization and M1 pro-inflammation factors produced by macrophages in mesenteric lymph nodes (MLNs). Actually, M1 polarization in SAE rats depended on intestinal epithelial cell (IEC)-derived exosome. GW4869-initiated inhibition of exosome secretion notably abolished M1 polarization and the secretion of IL-1β. However, GW4869-mediated improvement of hippocampus impairment was counteracted by the delivery of recombinant interleukin (IL)-1β to hippocampus. Mechanistically, IEC-derived exosome induced the excessive circulating IL-1β produced by CP-R048 macrophages, which subsequently induced damage and apoptosis of hippocampal neurons H19-7 in an autophagy-dependent manner. And reactivation of autophagy facilitates intestinal IL-1β-mediated hippocampal neuron injury.ConclusionCollectively, intestinal flora disturbance induced the exosome release of IECs, which subsequently caused M1 polarization in MLNs and the accumulation of circulating IL-1β. Circulating IL-1β promoted the damage and apoptosis of neurons in an autophagy-dependent manner. Possibly, targeting intestinal flora or IEC-derived exosome contributes to the treatment of SAE.


2022 ◽  
Vol 14 ◽  
Author(s):  
Shuang Chen ◽  
Da Xu ◽  
Liu Fan ◽  
Zhi Fang ◽  
Xiufeng Wang ◽  
...  

Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.


2021 ◽  
Author(s):  
Zong Chen ◽  
Yong Ding ◽  
Ying Zeng ◽  
Xue-Ping Zhang ◽  
Jian-Yan Chen

Abstract BackgroundPropofol and dexmedetomidine (DEX) are widely used in general anesthesia, and exert toxic and protective effects on hippocampal neurons, respectively. The study sought to investigate the molecular mechanisms of DEX-mediated neuroprotection against propofol-induced hippocampal neuron injury in mouse brains.MethodsHippocampal neurons of mice were treated with propofol, DEX, and propofol+DEX in vitro and in vivo. Neuronal apoptosis was evaluated by a means of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) or Hochest 33258 staining; Arc positive expression in hippocampus tissues was detected using a microscope in immunohistochemistry assays; miRNA-377-5p expression levels were quantified by RT-PCR; the protein levels of Arc, DNMT3A, and DNMT3B were determined using western blot; CCK-8 kit was used to evaluated neuron viability; methylation analysis in miR-377-5p promoter was performed through the methylated DNA immunoprecipitation (MeDIP) assay; luciferase reporter assay was performed to confirm whether Arc was under targeted regulation of miR-377-5p.Results In the current study, both in vitro and in vivo, propofol treatment induced hippocampal neuron apoptosis and suppressed cell viability. DNMT3A and DNMT3B expression levels were decreased following propofol treatment, resulting in lowered methylation in the miR-377-5p promoter region and then enhanced expression of miR-377-5p, leading to a decrease in the expression level of downstream Arc. Conversely, the expression levels of DNMT3A and DNMT3B were increased following DEX treatment, thus methylation in miR-377-5p promoter region was improved, and miR-377-5p expression levels were decreased, leading to an increase in the expression level of downstream Arc. Finally, DEX pretreatment protected hippocampal neurons against propofol-induced neurotoxicity by recover the expression levels of DNMT3A, miR-377-5p, and Arc to the normal levels.ConclusionsDEX reduced propofol-induced hippocampal neuron injury via the miR-377-5p/Arc signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shiba Niu ◽  
Weibo Shi ◽  
Yingmin Li ◽  
Shanyong Yi ◽  
Yang Li ◽  
...  

An increasing number of people are in a state of stress due to social and psychological pressures, which may result in mental disorders. Previous studies indicated that mesencephalic dopaminergic neurons are associated with not only reward-related behaviors but also with stress-induced mental disorders. To explore the effect of stress on dopaminergic neuron and potential mechanism, we established stressed rat models of different time durations and observed pathological changes in dopaminergic neurons of the ventral tegmental area (VTA) through HE and thionine staining. Immunohistochemistry coupled with microscopy-based multicolor tissue cytometry (MMTC) was employed to investigate the number changes of dopaminergic neurons. Double immunofluorescence labelling was used to investigate expression changes of endoplasmic reticulum stress (ERS) protein GRP78 and CHOP in dopaminergic neurons. Our results showed that prolonged stress led to pathological alteration in dopaminergic neurons of VTA, such as missing of Nissl bodies and pyknosis in dopaminergic neurons. Immunohistochemistry with MMTC indicated that chronic stress exposure resulted in a significant decrease in dopaminergic neurons. Double immunofluorescence labelling showed that the endoplasmic reticulum stress protein took part in the injury of dopaminergic neurons. Taken together, these results indicated the involvement of ERS in mesencephalic dopaminergic neuron injury induced by stress exposure.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1274
Author(s):  
Chiara Cervetto ◽  
Monica Averna ◽  
Laura Vergani ◽  
Marco Pedrazzi ◽  
Sarah Amato ◽  
...  

Background: In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. Methods: To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. Results: The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. Conclusions: Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.


Author(s):  
Yi-Gui Yu ◽  
Jun-Hui Han ◽  
Hai-Xia Xue ◽  
Weizu Li ◽  
Wen-Ning Wu ◽  
...  

Biochanin A is a natural plant estrogen, with various biological activities such as anti-apoptosis, anti-oxidation and suppression of inflammatory. In this study, we investigated the protective effects of biochanin A on AngⅡ-induced dopaminergic neurons damage in vivo and molecular mechanisms. Spontaneous activity and motor ability of mice among groups was detected by open-field test and swim-test. The expression of TH, LC3BⅡ/LC3BⅠ, Beclin-1, P62, p-FoxO3a / FoxO3a, FoxO3 and Endophilin A2 were determined by western blot and immunohistochemistry or immunofluorescence staining. Our results showed that AngⅡ treatment significantly increased the behavioral dysfunction of mice and DA neurons damage. Meanwhile, AngⅡ treatment increased the expression of LC3BⅡ/LC3BⅠ, Beclin-1, P62 and FoxO3a and decreased the expression of Endophilin A2 and p-FoxO3a / FoxO3a, however, biochanin A treatment alleviate these changes. In summary, these results suggest that biochanin A exerts protective effects on AngⅡ-induced mouse model may be related to regulating Endophilin A2, FoxO3a and autophagy-related proteins. However, the specific mechanism is not yet clear and needs further study.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Chao ◽  
Lili Zhang ◽  
Juhua Pan ◽  
Ying Zhang ◽  
Yuxia Chen ◽  
...  

Background: Depression is a burdensome psychiatric disorder presenting with disordered inflammation and neural plasticity. We conducted this study with an aim to explore the effect of stanniocalcin-1 (STC1) on inflammation and neuron injury in rats with depression-like behaviors.Methods: A model of depression-like behaviors was established in Wistar rats by stress stimulation. Adeno-associated virus (AAV)-packaged STC1 overexpression sequence or siRNA against STC1 was introduced into rats to enhance or silence the STC1 expression. Moreover, we measured pro-inflammatory and anti-inflammatory proteins, superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and reactive oxygen species (ROS) production. An in vitro model was induced in hippocampal neurons by CORT to explore the effect of STC1 on the neuron viability, toxicity and apoptosis. RT-qPCR and Western blot assay were employed to determine the expression of STC1 and nuclear factor κB (NF-κB) signaling pathway-related genes.Results: STC1 was under-expressed in the hippocampus of rats with depression-like behaviors, while its overexpression could reduce the depression-like behaviors in the stress-stimulated rats. Furthermore, overexpression of STC1 resulted in enhanced neural plasticity, reduced release of pro-inflammatory proteins, elevated SOD and CAT and diminished MDA level in the hippocampus of rats with depression-like behaviors. Overexpressed STC1 blocked the ROS/NF-κB signaling pathway, thereby enhancing the viability of CORT-treated neurons while repressing their toxicity and apoptosis.Conclusion: Collectively, overexpression of STC1 inhibits inflammation and protects neuron injury in rats with depression-like behaviors by inactivating the ROS/NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document