Experimental and mathematical analysis on spring-back and bowing defects in cold roll forming process

Author(s):  
Amin Poursafar ◽  
Saeid Saberi ◽  
Rasoul Tarkesh ◽  
Meisam Vahabi ◽  
Javad Jafari Fesharaki
2014 ◽  
Vol 626 ◽  
pp. 205-210 ◽  
Author(s):  
Jinn Jong Sheu ◽  
Chia Cheng Hsieh ◽  
Cheng Hsien Yu

In this paper, the main focus is to demonstrate a systematic method of designing the roll flower and corresponding dies for a double-gutter frame applied to the drawer slider. The blank development method was proposed to calculate the width of blank for bending with small radii. The cold roll forming process design was based on the maximum longitudinal strain minimization and the interference of rolls with the double-gutter geometry of product profile. Extra pre-bending was designed to avoid the occurrence of blank collision during forming process. The FEM method was adopted to evaluate the process and die designs. Due to the geometry complexity of the product, strain distribution is uneven which results in more spring back and stress concentration. A geometry setting design was proposed to create local strain redistribution and smooth strain distribution of entire section profile after final forming step. Using geometry setting die design, the spring back at the end point and the gutter areas of final product section are 0.07 mm and 0.1 mm, respectively. Without the geometry setting die design, the spring back at the end point and the gutter areas of final product section are 0.11 mm and 0.15 mm, respectively. The simulation results demonstrate the proposed methods are able to improve the accuracy of cold roll forming products.


2015 ◽  
Vol 1095 ◽  
pp. 894-897
Author(s):  
Ya Zhang ◽  
Dong Hong Kim ◽  
Dong Won Jung

Cold roll-forming of metal sections is a significant field in advancing forming of strip metal, and the forming processes are influenced by many factors. The scientific design of passes is worked out by combining theoretical analysis with finite element analysis, in accordance with the principles of cold roll-forming; thus the desired high-quality bending sections are achieved through a combination of theory and practice. This study mainly addresses the velocity of the rolls for sheets that have angle sides, and the spring-back of SGARC 440 alloy sheets in the roll forming process, where we use DEFORM to simulate the sheet.


2014 ◽  
Vol 2014.22 (0) ◽  
pp. 163-164
Author(s):  
Shintaro AKANUMA ◽  
Tomoya SUZUKI ◽  
Hayato ASO ◽  
Bunkyo KYO ◽  
Shinichi NISHIDA ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1902
Author(s):  
Zhijuan Meng ◽  
Yanan Fang ◽  
Lidong Ma

In order to implement rapid prediction of edge defects in the cold roll forming process, a new analytical method based on the mean longitudinal strain of the racks is presented. A cubic spline curve with the parameters of the cumulative chord length is applied to fit the corresponding points and center points of different passes, and fitting curves are obtained. As the cold roll forming is micro-tension forming, the tensions between racks are ignored. Then the mean longitudinal strains between racks are obtained. By comparing the mean longitudinal strain between racks and the yield strain of the material, we can judge whether there are defects at the edges. Finally, the reasonableness of this method is illustrated and validated by an example. With this method, the roll forming effect can be quickly predicted, and the position where a greater longitudinal strain occurred can be determined. In order to prevent the defects, the deformation angles need to be modified when the result is beyond the yield strain. To further prove the correctness of the theory, the results of the analytical method are compared with the ones of the non-linear finite element software ABAQUS. The analytical results have the same trend as the finite element results. This method can provide useful guidance to the actual design process.


2015 ◽  
Vol 651-653 ◽  
pp. 219-224 ◽  
Author(s):  
Antonio Formisano ◽  
F. Capece Minutolo ◽  
Antonio Caraviello ◽  
Luigi Carrino ◽  
Massimo Durante ◽  
...  

Cold roll forming is a process for plastic deformation, which allows realizing profiles, with a defined section and established length, from the plastic deformation of a metal sheet. The sheet is induced to cross several stands of rolls, arranged along the same axis of advancing. The rolls induce plastic deformation in the sheet and then lead it to the desired geometric configuration. In order to control the geometric parameters of the plate during the profiling, it was created a FEM model to simulate the final stage of the technological process, developed by an industrial production line of a company located in Naples (Italy), that sells tubes with several cross sections. In this phase, the semi-finished product, having a circular cross section, is forced to cross through four stands of rolls. In this way, it changes the geometric condition of the cross section from circular to square. The model was carried out using a non-linear calculation code, which allows analyzing the parameters of interest in the different process steps. The results, obtained numerically, were compared with the experimental ones through the measurement of five specimens, obtained directly from technological process. The values of percentage deviation, regarding the external dimension and the thickness, for each step of advancement, do not exceed the 3% of error. Then, the analysis results denote the capability to simulate the cold roll forming process using finite element method.


Sign in / Sign up

Export Citation Format

Share Document