RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses

2015 ◽  
Vol 178 (2) ◽  
pp. 251-266 ◽  
Author(s):  
K. B. Rebijith ◽  
R. Asokan ◽  
H. Ranjitha Hande ◽  
N. K. Krishna Kumar ◽  
V. Krishna ◽  
...  
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Karen Rihani ◽  
Stéphane Fraichard ◽  
Isabelle Chauvel ◽  
Nicolas Poirier ◽  
Thomas Delompré ◽  
...  

AbstractAnimals need to detect in the food essential amino acids that they cannot synthesize. We found that the odorant binding protein OBP19b, which is highly expressed in Drosophila melanogaster taste sensilla, is necessary for the detection of several amino acids including the essential l-phenylalanine. The recombinant OBP19b protein was produced and characterized for its binding properties: it stereoselectively binds to several amino acids. Using a feeding-choice assay, we found that OBP19b is necessary for detecting l-phenylalanine and l-glutamine, but not l-alanine or D-phenylalanine. We mapped the cells expressing OBP19b and compared the electrophysiological responses of a single taste sensillum to several amino acids: OBP19b mutant flies showed a reduced response compared to control flies when tested to preferred amino acids, but not to the other ones. OBP19b is well conserved in phylogenetically distant species suggesting that this protein is necessary for detection of specific amino acids in insects.


1990 ◽  
Vol 265 (11) ◽  
pp. 6118-6125
Author(s):  
J Pevsner ◽  
V Hou ◽  
A M Snowman ◽  
S H Snyder

Author(s):  
Ran Wang ◽  
Yuan Hu ◽  
Peiling Wei ◽  
Cheng Qu ◽  
Chen Luo

Abstract Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.


Sign in / Sign up

Export Citation Format

Share Document