Carbon Catabolite Regulation of Secondary Metabolite Formation and Morphological Differentiation in Streptomyces coelicolor

2016 ◽  
Vol 180 (6) ◽  
pp. 1152-1166 ◽  
Author(s):  
A. Romero-Rodríguez ◽  
B. Ruiz-Villafán ◽  
V. H. Tierrafría ◽  
R. Rodríguez-Sanoja ◽  
S. Sánchez
Author(s):  
Beatriz Ruiz‐Villafán ◽  
Rodrigo Cruz‐Bautista ◽  
Monserrat Manzo‐Ruiz ◽  
Ajit Kumar Passari ◽  
Karen Villarreal‐Gómez ◽  
...  

2010 ◽  
Vol 89 (3) ◽  
pp. 799-806 ◽  
Author(s):  
Adán Chávez ◽  
Angela Forero ◽  
Mauricio Sánchez ◽  
Romina Rodríguez-Sanoja ◽  
Guillermo Mendoza-Hernández ◽  
...  

Gene ◽  
1990 ◽  
Vol 95 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Sueharu Horinouchi ◽  
Morikazu Kito ◽  
Makoto Nishiyama ◽  
Kaoru Furuya ◽  
Soon-Kwang Hong ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Alba Romero-Rodríguez ◽  
Diana Rocha ◽  
Beatriz Ruiz-Villafan ◽  
Víctor Tierrafría ◽  
Romina Rodríguez-Sanoja ◽  
...  

2008 ◽  
Vol 74 (12) ◽  
pp. 3877-3886 ◽  
Author(s):  
Angel Manteca ◽  
Ruben Alvarez ◽  
Nuria Salazar ◽  
Paula Yagüe ◽  
Jesus Sanchez

ABSTRACT Despite the fact that most industrial processes for secondary metabolite production are performed with submerged cultures, a reliable developmental model for Streptomyces under these culture conditions is lacking. With the exception of a few species which sporulate under these conditions, it is assumed that no morphological differentiation processes take place. In this work, we describe new developmental features of Streptomyces coelicolor A3(2) grown in liquid cultures and integrate them into a developmental model analogous to the one previously described for surface cultures. Spores germinate as a compartmentalized mycelium (first mycelium). These young compartmentalized hyphae start to form pellets which grow in a radial pattern. Death processes take place in the center of the pellets, followed by growth arrest. A new multinucleated mycelium with sporadic septa (second mycelium) develops inside the pellets and along the periphery, giving rise to a second growth phase. Undecylprodigiosin and actinorhodin antibiotics are produced by this second mycelium but not by the first one. Cell density dictates how the culture will behave in terms of differentiation processes and antibiotic production. When diluted inocula are used, the growth arrest phase, emergence of a second mycelium, and antibiotic production are delayed. Moreover, pellets are less abundant and have larger diameters than in dense cultures. This work is the first to report on the relationship between differentiation processes and secondary metabolite production in submerged Streptomyces cultures.


Microbiology ◽  
2005 ◽  
Vol 151 (8) ◽  
pp. 2707-2720 ◽  
Author(s):  
Dae-Wi Kim ◽  
Keith F. Chater ◽  
Kye-Joon Lee ◽  
Andy Hesketh

Previous proteomic analyses of Streptomyces coelicolor by two-dimensional electrophoresis and protein mass fingerprinting focused on extracts from total cellular material. Here, the membrane-associated proteome of cultures grown in a liquid minimal medium was partially characterized. The products of some 120 genes were characterized from the membrane fraction, with 70 predicted to possess at least one transmembrane helix. A notably high proportion of ABC transporter systems was represented; the specific types detected provided a snapshot of the nutritional requirements of the mycelium. The membrane-associated proteins did not change very much in abundance in different phases of growth in liquid minimal medium. Identification of gene products not expected to be present in membrane protein extracts led to a reconsideration of the genome annotation in two cases, and supplemented scarce information on 11 hypothetical/conserved hypothetical proteins of unknown function. The wild-type membrane proteome was compared with that of a bldA mutant lacking the only tRNA capable of efficient translation of the rare UUA (leucine) codon. Such mutants are unaffected in vegetative growth but are defective in many aspects of secondary metabolism and morphological differentiation. There were a few clear changes in the membrane proteome of the mutant. In particular, two hypothetical proteins (SCO4244 and SCO4252) were completely absent from the bldA mutant, and this was associated with the TTA-containing regulatory gene SCO4263. Evidence for the control of a cluster of function-unknown genes by the SCO4263 regulator revealed a new aspect of the pleiotropic bldA phenotype.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Yoshihiro Mouri ◽  
Kenji Konishi ◽  
Azusa Fujita ◽  
Takeaki Tezuka ◽  
Yasuo Ohnishi

ABSTRACT The rare actinomycete Actinoplanes missouriensis forms sporangia, including hundreds of flagellated spores that start swimming as zoospores after their release. Under conditions suitable for vegetative growth, zoospores stop swimming and germinate. A comparative proteome analysis between zoospores and germinating cells identified 15 proteins that were produced in larger amounts in germinating cells. They include an orthologue of BldD (herein named AmBldD [BldD of A. missouriensis]), which is a transcriptional regulator involved in morphological development and secondary metabolism in Streptomyces. AmBldD was detected in mycelia during vegetative growth but was barely detected in mycelia during the sporangium-forming phase, in spite of the constant transcription of AmbldD throughout growth. An AmbldD mutant started to form sporangia much earlier than the wild-type strain, and the resulting sporangia were morphologically abnormal. Recombinant AmBldD bound a palindromic sequence, the AmBldD box, located upstream from AmbldD. 3′,5′-Cyclic di-GMP significantly enhanced the in vitro DNA-binding ability of AmBldD. A chromatin immunoprecipitation-sequencing analysis and an in silico search for AmBldD boxes revealed that AmBldD bound 346 genomic loci that contained the 19-bp inverted repeat 5′-NN(G/A)TNACN(C/G)N(G/C)NGTNA(C/T)NN-3′ as the consensus AmBldD-binding sequence. The transcriptional analysis of 27 selected AmBldD target gene candidates indicated that AmBldD should repress 12 of the 27 genes, including bldM, ssgB, whiD, ddbA, and wblA orthologues. These genes are involved in morphological development in Streptomyces coelicolor A3(2). Thus, AmBldD is a global transcriptional regulator that seems to repress the transcription of tens of genes during vegetative growth, some of which are likely to be required for sporangium formation. IMPORTANCE The rare actinomycete Actinoplanes missouriensis undergoes complex morphological differentiation, including sporangium formation. However, almost no molecular biological studies have been conducted on this bacterium. BldD is a key global regulator involved in the morphological development of streptomycetes. BldD orthologues are highly conserved among sporulating actinomycetes, but no BldD orthologues, except one in Saccharopolyspora erythraea, have been studied outside the streptomycetes. Here, it was revealed that the BldD orthologue AmBldD is essential for normal developmental processes in A. missouriensis. The AmBldD regulon seems to be different from the BldD regulon in Streptomyces coelicolor A3(2), but they share four genes that are involved in morphological differentiation in S. coelicolor A3(2).


Sign in / Sign up

Export Citation Format

Share Document