submerged cultures
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 38)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 597
Author(s):  
Yong Pil Hwang ◽  
Gi Ho Lee ◽  
Thi Hoa Pham ◽  
Mi Yeon Kim ◽  
Chae Yeon Kim ◽  
...  

The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including β-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1β, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1β, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.


Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Leidy Johana Valencia-Hernández ◽  
Jorge E. Wong-Paz ◽  
Juan Alberto Ascacio-Valdés ◽  
Juan Carlos Contreras-Esquivel ◽  
Mónica L. Chávez-González ◽  
...  

Procyanidins are bioactive molecules with industrial and pharmaceutical relevance, they are present in recalcitrant agro-industrial wastes that are difficult to degrade. In this study, we evaluated the potential consumption of procyanidins from Aspergillus niger and Trichoderma harzianum strains in submerged fermentations. For this purpose, a culture medium containing salts, glucose, and procyanidins was formulated, where procyanidins were added to the medium after the near-total consumption of glucose. The submerged cultures were carried out in amber flasks at 30 °C and 120 rpm. The addition of procyanidins to the culture medium increased the formation of micellar biomass for all the strains used. The use of glucose affected the growth of A. niger GH1 and A. niger HS1, however, in these assays, a total consumption of procyanidins was obtained. These results show that the consumption of procyanidins by fungal strains in submerged fermentations was influenced by the pH, the use of glucose as the first source of carbon, and the delayed addition of procyanidins to the medium. The study showed that A. niger and T. harzianum strains can be used as a natural strategy for the consumption or removal of procyanidins present in recalcitrant residues of risk to the environment and human health.


2021 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
Rebeca Domínguez-Santos ◽  
Katarina Kosalková ◽  
Isabel-Clara Sánchez-Orejas ◽  
Carlos Barreiro ◽  
Yolanda Pérez-Pertejo ◽  
...  

The filamentous fungus Penicillium chrysogenum (recently reidentified as Penicillium rubens) is used in the industrial production of the b-lactam antibiotic penicillin. There are several mechanisms regulating the production of this antibiotic, acting both at the genetic and epigenetic levels, the latter including the modification of chromatin by methyltransferases. S-adenosyl-L-methionine (AdoMet) is the main donor of methyl groups for methyltransferases. In addition, it also acts as a donor of aminopropyl groups during the biosynthesis of polyamines. AdoMet is synthesized from L-methionine and ATP by AdoMet-synthetase. In silico analysis of the P. chrysogenum genome revealed the presence of a single gene (Pc16g04380) encoding a putative protein with high similarity to well-known AdoMet-synthetases. Due to the essential nature of this gene, functional analysis was carried out using RNAi-mediated silencing techniques. Knock-down transformants exhibited a decrease in AdoMet, S-adenosyl-L-homocysteine (AdoHcy), spermidine and benzylpenicillin levels, whereas they accumulated a yellow-orange pigment in submerged cultures. On the other hand, overexpression led to reduced levels of benzylpenicillin, thereby suggesting that the AdoMet synthetase, in addition to participate in primary metabolism, also controls secondary metabolism in P. chrysogenum.


2021 ◽  
Vol 75 (12) ◽  
pp. 1058-1065
Author(s):  
Lauriane Pillet ◽  
Remy Dufresne ◽  
Simon Crelier

Contaminants deriving from human activities represent a constantly growing threat to our environment and have a direct impact on plant and animal health. To alleviate this ecological imbalance, biocatalysis offers a green and sustainable alternative to conventional chemical processes. Due to their broad specificity, laccases are enzymes possessing excellent potential for synthetic biotransformations in various fields as well as for the degradation of organic contaminants. Herein, we produced laccases in submerged cultures of P. ostreatus and T. versicolor in three different media. The fungi/medium combination leading to the highest enzymatic activity was malt extract (2%) + yeast extract (3%) + glucose (0.8%). Laccase production was further increased by supplementing this medium with different concentrations of Cu2+, which also provided a better understanding of the induction effect. Additionally, we disclose preliminary results on the interaction of laccases with mediators (ABTS and violuric acid - VA) for two main applications: lignin depolymerisation with guaiacylglycerol-β-guaiacyl ether (GBG) as lignin model and micropollutant degradation with Remazol Brilliant Blue (RBB) as enzymatic bioremediation model. Promising results were achieved using VA to increase depolymerization of GBG dimer and to enhance RBB decolorisation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3225
Author(s):  
Maria João Bessa ◽  
Fátima Brandão ◽  
Paul H. B. Fokkens ◽  
Daan L. A. C. Leseman ◽  
A. John F. Boere ◽  
...  

Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air–liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.


2021 ◽  
Author(s):  
◽  
Dinary Durán Sequeda

The main objective of this study was to determine the influence of the composition of the culture medium and lignocellulosic compounds on the secretion of laccase enzymes by P. ostreatus in submerged cultures. These studies were done using a statistical and systematic approach that allowed the control of the culture media composition. The optimal nutritional conditions were found that simultaneously increased fungal growth and laccase activity in the absence and presence of copper sulfate, a recognized inducer of laccase. Under these conditions, the biochemical aspects of transcripts in P. ostreatus related to laccase secretion were evaluated , which revealed the participation of membrane transporters with high affinity for copper (CTRs) as intermediate candidates for the regulation of three laccase genes, lacc2, lacc6, and lacc10. Moreover, the evaluation of the results of the culture media composition suggests that the regulation of these transporters is closely linked to sufficient nutritional conditions in carbon and nitrogen, with central participation of the metabolism of organic nitrogen in this process. With these findings, it was possible to obtain more profound knowledge of the pretreatment of lignocellulosic biomass by P. ostreatus in a submerged culture that was oriented to determine the role of laccase activity in the biological pretreatment of rice husks.


Nukleonika ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 83-90
Author(s):  
Alexandru Petre ◽  
Mihaela Ene ◽  
Daniel Constantin Negut ◽  
Florentina Gatea ◽  
Emanuel Vamanu

Abstract Inonotus obliquus is a parasite on the birch and other trees and is also a well-known medicinal mushroom. Its sterile conk is highly sought for its bioactive compounds such as phenols, polysaccharides, triterpenoids, and steroids. It was traditionally used to treat various gastrointestinal diseases, viral and parasitic infections, to counteract the progression of cancers, and to stimulate the immune system. We used acute gamma irradiation, followed by short-term submerged cultivation, as an oxidative stress inducer to enhance the synthesis of mycelial metabolites. The 300 Gy and 400 Gy doses showed the best results across the whole experimental design. Each assayed criterion had a different corresponding optimal stimulation dose. In one experiment, sublethal doses of irradiation triggered the dry weight of the cultured mycelium to increase by 19.764%. The free radical scavenging potential of the mycelium extracts increased by 79.83%. The total phenolic content of mycelium extracts and culture broth increased by 55.7% and 62.987%, respectively. The total flavonoid and sinapinic acid content of the broth increased by 934.678% and 590.395%, respectively. As such, gamma irradiation pre-treatment of the mycelial inoculum proved an interesting, economically and environmentally effective tool for stimulating secondary metabolite synthesis in submerged mycelium cultures.


Author(s):  
Sandra Garrigues ◽  
Roland S. Kun ◽  
Mao Peng ◽  
Birgit S. Gruben ◽  
Isabelle Benoit Gelber ◽  
...  

Understanding the interaction between filamentous fungi and their natural and biotechnological environments has been of great interest for the scientific community. Submerged cultures are preferred over solid cultures at a laboratory scale to study the natural response of fungi to different stimuli found in nature (e.g., carbon/nitrogen sources, pH).


Author(s):  
Ivana Cavello ◽  
Brenda Bezus ◽  
Sebastián Cavalitto

Abstract Background Argentina’s geothermal areas are niches of a rich microbial diversity. In 2020, species of Bacillus cytotoxicus were isolated for the first time from these types of pristine natural areas. Bacillus cytotoxicus strains demonstrated the capability to grow and degrade chicken feathers with the concomitant production of proteases with keratinolytic activity, enzymes that have multitude of industrial applications. The aim of this research was to study the production of the proteolytic enzymes and its characterization. Also, feather protein hydrolysates produced during fermentation were characterized. Results Among the thermotolerant strains isolated from the Domuyo geothermal area (Neuquén province, Argentina), Bacillus cytotoxicus LT-1 and Oll-15 were selected and put through submerged cultures using feather wastes as sole carbon, nitrogen, and energy source in order to obtain proteolytic enzymes and protein hydrolysates. Complete degradation of feathers was achieved after 48 h. Zymograms demonstrated the presence of several proteolytic enzymes with an estimated molecular weight between 50 and > 120 kDa. Optimum pH and temperatures of Bacillus cytotoxicus LT-1 crude extract were 7.0 and 40 °C, meanwhile for Oll-15 were 7.0 and 50 °C. Crude extracts were inhibited by EDTA and 1,10 phenanthroline indicating the presence of metalloproteases. Feather protein hydrolysates showed an interesting antioxidant potential measured through radical-scavenging and Fe3+-reducing activities. Conclusion This work represents an initial approach on the study of the biotechnological potential of proteases produced by Bacillus cytotoxicus. The results demonstrated the importance of continuous search for new biocatalysts with new characteristics and enzymes to be able to cope with the demands in the market.


Sign in / Sign up

Export Citation Format

Share Document