Engineering d-Lactate Dehydrogenase from Pediococcus acidilactici for Improved Activity on 2-Hydroxy Acids with Bulky C3 Functional Group

2019 ◽  
Vol 189 (4) ◽  
pp. 1141-1155
Author(s):  
Hoe-Suk Lee ◽  
Jisu Park ◽  
Young Je Yoo ◽  
Young Joo Yeon
1980 ◽  
Vol 191 (2) ◽  
pp. 341-348 ◽  
Author(s):  
E Poerio ◽  
D D Davies

A 2000-fold purification of L(+)-lactate dehydrogenase from potatoes is reported. Five isoenzymes of lactate dehydrogenase can be detected in crude extracts of potato, and three of these are present in the purified preparation. The enzyme (mol.wt. 150 000), which is composed of four subunits (mol.wt. 37 500), is active with the same oxo acids and hydroxy acids that have been reported as substrates with the same oxo acids and hydroxy acids that have been reported as substrates for vertebrate lactate dehydrogenases. These similarities between potato and vertebrate lactate dehydrogenases contrast sharply with some other reports on potato lactate dehydrogenase. These discrepancies are discussed in relation to the proposition that vertebrate and potato lactate dehydrogenases share a common evolutionary origin.


1976 ◽  
Vol 153 (2) ◽  
pp. 165-172 ◽  
Author(s):  
A Blanco ◽  
C Burgos ◽  
N M Gerez de Burgos ◽  
E E Montamat

1. Studies were carried out with pure lactate dehydrogenase isoenzymes C4 (LDH isoenzyme X), B4, (LDH isoenzyme 1) and A4 (LDH isoenzyme 5) isolated from mouse testis, heart and muscle tissue respectively; with LDH isoenzyme X purified from pigeon testes and with crude lysates of spermatozoa from man, bull and rabbit. 2. LDH isoenzyme X from all species showed greater ability than the other isoenzymes to catalyse the NAD+-linked interconversions of 2-oxobutanoate into 2-hydroxybutanoate and of 2-oxopentanoate into 2-hydroxypentanoate. 3. Mouse LDH isoenzyme X presented the broadest spectrum of substrate specificity. It exhibited very similar Km values for a variety of 2-oxo acids: 2-oxopropanoate (pyruvate), 2-oxobutanoate, 2-oxo-3-methylbutanoate, 2-oxopentanoate, 2-oxo-3-methylpentanoate, 2-oxo-4-methylpentanoate, 2-oxohexanoate and 2-oxo-3-phenylpropanoate (phenylpyruvate). The corresponding 2-hydroxy acids were also readily utilized in the reverse reaction. A strong inhibition by substrate and product was demonstrated for the direct reaction. 4. Intracellular distribution of LDH isoenzyme X was investigated in mouse testes. LDH isoenzyme X activity was located in the fraction of “heavy mitochondria” and in the soluble phase. 5. A possible functional role for LDH isoenzyme X is proposed: the redox couple-2-oxo acid-2-hydroxy acid could integrate a shuttle system transferring reducing equivalents from cytoplasm to mitochondria.


1989 ◽  
Vol 67 (6) ◽  
pp. 1065-1070 ◽  
Author(s):  
Daniel Bur ◽  
Marcel A. Luyten ◽  
Hla Wynn ◽  
Louis R. Provencher ◽  
J. Bryan Jones ◽  
...  

The potential utility of the L-lactate dehydrogenase of Bacillusstearothermophilus (BSLDH) for stereospecific, preparative-scale reductions of α-keto acids to (S)-α-hydroxy acids of > 99% ee has been demonstrated. BSLDH is a stable, thermophilic, enzyme whose gene has been cloned into a high-expression vector to assure its plentiful supply. Its specificity for keto acid substrates possessing straight- and branched-chain alkyl, cyclopropyl, or phenyl groups has been evaluated in preparative and kinetic terms, and compared with that of the mammalian pig heart enzyme (PHLDH). The specificities of BSLDH and PHLDH are similar, with branched alkyl-chain keto acids being poor substrates for both enzymes. Keywords: enzymes in organic syntheses, lactate dehydrogenase, asymmetric synthesis.


Sign in / Sign up

Export Citation Format

Share Document