strong inhibition
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 48)

H-INDEX

36
(FIVE YEARS 2)

Author(s):  
Julia Hesse ◽  
Mona K. Rosse ◽  
Bodo Steckel ◽  
Bernhard Blank-Landeshammer ◽  
Svenja Idel ◽  
...  

AbstractCD73-derived adenosine plays a major role in damage-induced tissue responses by inhibiting inflammation. Damage-associated stimuli, such as hypoxia and mechanical stress, induce the cellular release of ATP and NAD+ and upregulate the expression of the nucleotide-degrading purinergic ectoenzyme cascade, including adenosine-generating CD73. Extracellular NAD+ also serves as substrate for mono-ADP-ribosylation of cell surface proteins, which in human cells is mediated by ecto-ADP-ribosyltransferase 1 (ARTC1). Here we explored, whether human CD73 enzymatic activity is regulated by mono-ADP-ribosylation, using recombinant human CD73 in the presence of ARTC1 with etheno-labelled NAD+ as substrate. Multi-colour immunoblotting with an anti-etheno-adenosine antibody showed ARTC1-mediated transfer of ADP-ribose together with the etheno label to CD73. HPLC analysis of the enzymatic activity of in vitro-ribosylated CD73 revealed strong inhibition of adenosine generation in comparison to non-ribosylated CD73. Mass spectrometry of in vitro-ribosylated CD73 identified six ribosylation sites. 3D model analysis indicated that three of them (R328, R354, R545) can interfere with CD73 enzymatic activity. Our study identifies human CD73 as target for ARTC1-mediated mono-ADP-ribosylation, which can profoundly modulate its adenosine-generating activity. Thus, in settings with enhanced release of NAD+ as substrate for ARTC1, assessment of CD73 protein expression in human tissues may not be predictive of adenosine formation resulting in anti-inflammatory activity.


2021 ◽  
Vol 5 (6) ◽  
pp. 30-33
Author(s):  
Tao Gou ◽  
Hailong Si

In recent years, seeking effective anti-angiogenic components and therapeutic methods from traditional Chinese Medicine (TCM) has been a hot spot in the treatment of malignant tumors. In particular, the active ingredients found in Chinese herbal extracts have shown strong inhibition of tumor neovascularization.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6025
Author(s):  
Najmeh Eskandari ◽  
Vitalyi Senyuk ◽  
Jennifer Moore ◽  
Zane Kalik ◽  
Qiyue Luan ◽  
...  

Control of ionic gradients is critical to maintain cellular homeostasis in both physiological and pathological conditions, but the role of ion channels in cancer cells has not been studied thoroughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transition (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a depletion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong and fast inhibition of the TGFβ signaling. Application of NS1643 resulted in de-phosphorylation of the TGFβ downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B (calcineurin). Consistent with the role of TGFβ in controlling cancer stemness, NS1643 also produced a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFβ signaling, which results in inhibition of motility in colon cancer cells.


Author(s):  
Paula M Kustiawan

Background: Yellow wood (Coscinium fenestratum) is one of the typical forest plants of East Kalimantan. The hallmark of this plant is the roots, stems and the fruits pulp have a yellow color. There have been many studies on its use and potential in treating liver disease. However, there is limited research about the use of their fruits peel. Objectives: The purpose of this study was as an initial screening of the antioxidant and antibacterial activity from yellow wood (Coscinium fenestratum) fruits peel. Material and Methods: The yellow wood fruits peel was extracted using methanol solvent to obtain the MeOH extract of their fruits peel. The DPPH test was carried out to determined its antioxidant activity (25,50 and 100 ppm). The agar well difusion method was carried out to determined its antibacterial activity. Phytochemical tests are also carried out to determined the secondary metabolites of that fruits peel. Results: The results of the phytochemical test showed that the fruits peel contained alkaloids, flavonoids, carbohydrates, and tannins, but there were no terpenoids or steroids. The fruits peel has an antioxidant activity (58%) at 100 ppm concentration. While the antibacterial test showed strong inhibition at 100 ppm concentration on S. mutans, S. aureus, P. acne and E. coli bacteria. Conclusions: The fruits peel of the yellow wood has compounds that have strong antibacterial activity and medium antioxidant activity.


2021 ◽  
Author(s):  
Bandana Singh ◽  
Adam Kanack ◽  
Antonios Bayas ◽  
Gemlyn George ◽  
Yazan Abou-Ismail ◽  
...  

Background COVID-19 vaccines have been associated with a rare thrombotic and thrombocytopenic reaction, Vaccine-induced immune thrombotic thrombocytopenia (VITT) characterized by platelet-activating anti-PF4 antibodies. This study sought to assess clonality of VITT antibodies and evaluate their characteristics in antigen-based and functional platelet studies. Methods Anti-PF4 antibodies were isolated from five patients with VITT secondary to ChAdOx1 nCoV-19 (n=1) or Ad26.COV2.S (n=4) vaccination. For comparative studies with heparin-induced thrombocytopenia (HIT), anti-PF4 antibodies were isolated from one patient with spontaneous HIT, another with classical HIT, and two patients with non-pathogenic (non-platelet activating) anti-PF4 antibodies. Isolated antibodies were subject to ELISA and functional testing, and mass spectrometric evaluation for clonality determination. Results All five VITT patients had oligoclonal anti-PF4 antibodies (3 monoclonal, one bi- and one tri-clonal antibodies), while HIT anti-PF4 antibodies were polyclonal. Notably, like VITT antibodies, anti-PF4 antibodies from a spontaneous HIT patient were monoclonal. The techniques employed did not detect non-pathogenic anti-PF4 antibodies. The ChAdOx1 nCoV-19-associated VITT patient made an excellent recovery with heparin treatment. In vitro studies demonstrated strong inhibition of VITT antibody-induced platelet activation with therapeutic concentrations of heparin in this and one Ad26.COV2.S-associated VITT patient. Oligoclonal VITT antibodies with persistent platelet-activating potential were detected at 6 and 10 weeks after acute presentation in two patients tested. Two of the 5 VITT patients had recurrence of thrombocytopenia and one patient had focal seizures several weeks after acute presentation. Conclusion Persistent oligoclonal anti-PF4 antibodies mediate VITT. Current guidance to avoid heparin in all VITT patients may need to be reassessed.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 784
Author(s):  
Aljaz Medic ◽  
Tilen Zamljen ◽  
Ana Slatnar ◽  
Metka Hudina ◽  
Robert Veberic

We investigated whether juglone is the only allelochemical in a leaf extract from the walnut (Juglans regia L.). This was achieved through comparisons of the effects of pure juglone (1 mM, 100 μM, 10 μM control juglone) and J. regia leaf extract (prepared as 1 mM, 100 μM leaf juglone) on seed germination, seedling growth, and secondary metabolism of the selected crop vegetables. Two control treatments were also applied, as extraction medium and water. For inhibition of seed germination, S. lycopersicum, B. rapa var. japonica, and V. locusta were more sensitive to 1 mM leaf juglone, and L. sativa was more sensitive to 1 mM control juglone. This suggests that this walnut leaf extract contains specific phenolic substance(s) that can stimulate seed germination in some species and inhibit it in others. Seedling length was more sensitive to 1 mM leaf juglone than 1 mM control juglone, with selective strong inhibition of root length versus shoot length by 1 mM control juglone. Juglone also had significant effects on the secondary metabolism of L. sativa, in particular for seedlings treated with 100 μM control juglone, with marked decreases in all secondary metabolites studied. Flavonols constituted the majority of these metabolites in L. culinaris, which showed the least sensitivity to both control juglone and leaf juglone treatments. Thirty compounds were identified and quantified in S. lycopersicum, L. culinaris, and L. sativa, some for the first time in these plants, and all for the first time in the seedlings of these crop vegetables.


Author(s):  
Florian Binder ◽  
Giulia Gallo ◽  
Elias Bendl ◽  
Isabella Eckerle ◽  
Myriam Ermonval ◽  
...  

AbstractThe orthohantavirus Puumala virus (PUUV), which is transmitted by bank voles (Clethrionomys glareolus), and other vole-borne hantaviruses contain in their small (S) genome segment two overlapping open reading frames, coding for the nucleocapsid protein and the non-structural protein NSs, a putative type I interferon (IFN-I) antagonist. To investigate the role of NSs of PUUV and other orthohantaviruses, the expression pattern of recombinant NSs constructs and their ability to inhibit human IFN-I promoter activity were investigated. The NSs proteins of PUUV and related cricetid-borne orthohantaviruses showed strong inhibition of IFN-I promoter induction. We identified protein products originating from three and two methionine initiation codons in the NSs ORF of PUUV during transfection and infection, respectively. The three putative start codons are conserved in all PUUV strains analysed. Translation initiation at these start codons influenced the inhibitory activity of the NSs products, with the wild-type (wt) construct expressing two proteins starting at the first and second methionine and showing strong inhibition activity. Analysis of in vitro-generated variants and naturally occurring PUUV NSs proteins indicated that amino acid variation in the NSs protein is well tolerated, suggesting its phenotypic plasticity. The N-terminal 20-amino-acid region of the NSs protein was found to be associated with strong inhibition and to be highly vulnerable to amino acid exchanges and tag fusions. Infection studies using human, bank vole, and Vero E6 cells did not show obvious differences in the replication capacity of PUUV Sotkamo wt and a strain with a truncated NSs protein (NSs21Stop), showing that the lack of a full-length NSs might be compensated by its N-terminal peptide, as seen in transfection experiments. These results contribute to our understanding of virus-host interactions and highlight the importance of future innate immunity studies in reservoir hosts.


2021 ◽  
Author(s):  
Gera Neufeld ◽  
Shira Toledano ◽  
Adi D. Sabag ◽  
Tanya Liburkin-Dan ◽  
Ofra Kessler

The semaphorin guidance factors receptor Plexin-A2 transduces sema6A and sema6B signals and when associated with neuropilins can also transduce sema3C signals. Inhibition of plexin-A2 expression in U87MG glioblastoma cells resulted in strong inhibition of cell proliferation and tumor forming ability. Knock-out of the plexin-A2 gene using CRISPR/Cas9 also inhibited cell proliferation which was rescued following re-expression of the plexin-A2 cDNA or expression of a truncated plexin-A2 lacking the extracellular domain. Inhibition of plexin-A2 expression resulted in cell cycle arrest at the G2/M stage, and was accompanied by changes in cytoskeletal organization, cell flattening, and by the expression of senescence associated β-galactosidase. It was also associated with reduced AKT phosphorylation and enhanced phosphorylation of p38MAPK. We find that the pro-proliferative effects of plexin-A2 are mediated by FARP2 and FYN since mutations in the FARP2 binding domain of plexin-A2 or in the FYN phosphorylation sites of plexin-A2 compromised the rescue of the proliferative activity by the plexin-A2 intracellular domain. Our results suggest that plexin-A2 may represent a novel target for the development of anti-tumorigenic therapeutics.


Sign in / Sign up

Export Citation Format

Share Document