Crude Oil Biodegradation by Newly Isolated Bacterial Strains and Their Consortium Under Soil Microcosm Experiment

2019 ◽  
Vol 189 (4) ◽  
pp. 1223-1244 ◽  
Author(s):  
Marie Thérèse Bidja Abena ◽  
Naranjargal Sodbaatar ◽  
Tongtong Li ◽  
Narantuya Damdinsuren ◽  
Battsetseg Choidash ◽  
...  
Oikos ◽  
1981 ◽  
Vol 37 (3) ◽  
pp. 257 ◽  
Author(s):  
Erland Bååth ◽  
Ulrik Lohm ◽  
Björn Lundgren ◽  
Thomas Rosswall ◽  
Bengt Söderström ◽  
...  

Author(s):  
J. Jeffrey Wilson ◽  
Douglas W. Lee ◽  
Brett M. Yeske ◽  
Fred Kuipers

A biotreatability test was performed on oil-contaminated sphagnum peat moss from a 1985 pipeline spill of light Pembina Cardium crude oil at a bog near Violet Grove in central Alberta. Four tests were designed to simulate several field treatment approaches and to collect critical data on toxicity and leachability of this material. These tests included a bioslurry test, a soil microcosm test, an aerated water saturated peat column test, and a standard toxicity characteristic leachate potential (TCLP) test. In the saturated peat column tests, two nutrient amendment rates and a surfactant were tested to quantify biostimulation effects from an in-situ treatment design. An innovative aeration technology called the GLR (Gas-Liquid Reactor) was used to create a constant supply of hyperoxygenated water prior to column injection. The GLR continuously produces air bubbles of less than 50 microns in diameter, thereby maximizing air surface area and thereby increasing gas transfer rates. Crude oil biodegradation was quantified by the reduction in both extractable hydrocarbons and toxicity of the peat solids. The results confirmed that bioremediation of the residual crude oil to non-toxic levels in the peat bog at Violet Grove will be successful. All three tests — bioslurry, soil microcosm, and soil columns — gave similar results of at least 74% biodegradation of the residual crude oil on the peat solids. In situ bioremediation using the GLR aerated water injection system or an ex situ landfarming or biopile approach should achieve the 1000 mg/kg total petroleum hydrocarbon criteria. Neither fertilizer nor surfactant amendments were necessary to enhance oil biodegradation in the in situ column tests. The TCLP test indicated that ex situ treatment would require an impermeable liner for leachate collection. The time required to achieve the final remediation goals will depend on climatic variable such as temperature and rainfall during active summer season bioremediation. It is anticipated that an in situ approach using recirculated aerated water would achieve the cleanup up criteria within one full field treatment season.


2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document