interfacial surface
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 46)

H-INDEX

24
(FIVE YEARS 5)

2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Zhixi Qian ◽  
Thomas R. Hanley ◽  
Lisa M. Reece ◽  
James F. Leary ◽  
Eugene D. Boland ◽  
...  

There is an identified need for point-of-care diagnostic systems for detecting and counting specific rare types of circulating cells in blood. By adequately labeling such cells with immunomagnetic beads and quantum dots, they can be efficiently collected magnetically for quantification using fluorescence methods. Automation of this process requires adequate mixing of the labeling materials with blood samples. A static mixing device can be employed to improve cell labeling efficiency and eliminate error-prone laboratory operations. Computational fluid dynamics (CFD) were utilized to simulate the flow of a labeling-materials/blood mixture through a 20-stage in-line static mixer of the interfacial-surface-generator type. Optimal fluid mixing conditions were identified and tested in a magnetic bead/tumor cell model, and it was found that labeled cells could be produced at 1.0 mL/min flow rate and fed directly into an in-line magnetic trap. The trap design consists of a dual flow channel with three bends and a permanent magnet positioned at the outer curve of each bend. The capture of labeled cells in the device was simulated using CFD, finite-element analysis and magnetophoretic mobility distributions of labeled cells. Testing with cultured CRL14777 human melanoma cells labeled with anti-CD146 1.5 μm diameter beads indicated that 90 ± 10% are captured at the first stage, and these cells can be captured when present in whole blood. Both in-line devices were demonstrated to function separately and together as predicted.


2021 ◽  
Vol 939 (1) ◽  
pp. 012025
Author(s):  
Kh Isakhodjayev ◽  
F Mukhtarov ◽  
D Kodirov ◽  
I Toshpulatov

Abstract The nozzle chamber, in which water is sprayed into the air stream using mechanical nozzles, is the main unit for these processes in central air conditioning systems (AHUs). The types of nozzles used do not have a sufficiently high effect of interfacial surface forming due to increased metal usage and the broad total dimensions of certain chambers, i.e., they do not have intensive heat and mass transfer. The authors performed testing of the apparatus in the direct iso-enthalpic air cooling mode to improve the performance of the nozzle chamber. Thus, the experiments conducted confirm the relatively high efficiency of FET operation at small values of irrigation coefficient B ≥ 1.0. The area highlighted is characterised by the unstable operation of other nozzle types. Therefore, FET nozzles can be operated at irrigation factor values B = 0.1…1.0. Experiments have shown that this equation is applicable for practical calculations, with a relative error of ±6.7%. The aerodynamic resistance of the spray chamber nozzle chambers is also according to the data not exceeding 160 Pa.


2021 ◽  
Author(s):  
Carine Huon ◽  
Avinash Tiwari ◽  
Cinzia Rotella ◽  
Paolo Mangiagalli ◽  
bo persson

Abstract We study the leakage of fluids (liquids or gases) in syringes with glass barrel, steel plunger and rubber O-ring stopper. The leakrate depends on the interfacial surface roughness and on the viscoelastic properties of the rubber. Random surface roughness is produced by sandblasting the rubber O-rings. We present a very simple theory for gas flow which takes into account both the diffusive and ballistic flow. The theory shows that the interfacial fluid flow (leakage) channels are so narrow that the gas flow is mainly ballistic (the so called Knudsen limit). We compare the leakrate obtained using air and helium. For barrels filled with water we observe no leakage even if leakage occurs for gases. We interpret this as resulting from capillary (Laplace pressure or surface energy) effects.


2021 ◽  
Vol 11 (11) ◽  
pp. 5289
Author(s):  
Hawa Ringkai ◽  
Khairul Fikri Tamrin ◽  
Nadeem Ahmed Sheikh ◽  
Shahrol Mohamaddan

Water-in-oil droplets have huge importance in chemical and biotechnology applications, despite their difficulty being produced in microfluidics. Moreover, existing studies focus more on the different shape of microchannels instead of their size, which is one of the critical factors that can influence flow characteristics of the droplets. Therefore, the present work aims to study the behaviours of water-in-oil droplets at the interfacial surface in an offset T-junction microchannel, having different radiuses, using micro-PIV software. Food-grade palm olein and distilled water seeded with polystyrene microspheres particles were used as working fluids, and their captured images showing their generated droplets’ behaviours focused on the junction of the respective microfluidic channel, i.e., radiuses of 400 µm, 500 µm, 750 µm and 1000 µm, were analysed via PIVlab. The increasing in the radius of the offset T-junction microchannel leads to the increase in the cross-sectional area and the decrease in the distilled water phase’s velocity. The experimental velocity of the water droplet is in agreement with theoretical values, having a minimal difference as low as 0.004 mm/s for the case of the microchannel with a radius of 750 µm. In summary, a small increase in the channel’s size yields a significant increase in the overall flow of a liquid.


Author(s):  
N. M. Litvinko

The activity of porcine pancreatic phospholipase A2 and the same of cobra venom toward phosphatidylcholine having different supramolecular organization and interfacial charge (micelles with sodium deoxycholate and liposomes) under UV irradiation (180–400 nm) was studied. It was shown that the UV-irradiated lipid phase is characterized by an increased index of phosphatidylcholine oxidation and the absence of a peak with a maximum of 235.5 nm, related to the presence of unsaturated bonds in the UV spectrum of docosahexaenoic acid, but retained in the presence of the antioxidant trolox. The activation of both phospholipases A2 after UV irradiation of the substrate was established, regardless of its supramolecular organization, the charge of the interfacial surface, and the substrate specificity of the enzymes. Using dynamic light scattering, 0.3 % of larger particles were found among the irradiated micelles of phosphatidylcholine. The results obtained indicate that areas of accumulation of hydroperoxidized lipids can be formed in the irradiated model membrane, which serve as a site of intensified attack for phospholipases.


2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


2021 ◽  
pp. 81-89
Author(s):  
Lavr Molchanov ◽  
Natalia Arendach ◽  
Yevhen Synehin

It is discussed in the article the concept proposed for the production of ultra-low carbon steel, which involves the production of crude steel in basic oxygen furnace followed by oxidative blowing with an oxygen-argon mixture in a teeming ladle to decrease a carbon content in steel to less than 0.03%. High efficiency of the proposed technology is possible only under the intensive process of metal decarburization, which consists of the three stages: supply of reagents to the gas bubble, chemical interaction of reagents on the interfacial surface and removal of reaction products. At low carbon concentrations in the metal, the limiting link of the process is carbon mass transfer to the interfacial surface, which can be intensified by melt stirring. The objective of this article is to study the influence of design of the blowing devices, namely, the position and shape of the pores, on the efficiency of metal homogenization in the teeming ladle. Blowing devices with a circular hole, a slit and undirectional porosity were considered. To perform physical simulation by Buckingham's theorem, similarity numbers were chosen to describe the considered process. In particular, it is proposed to use dimensionless volume flow and a modified homochronicity number. Based on the physical simulation on the “water” model, it was found that the best results of homogenization of the chemical composition of the liquid metal in the teeming ladle show blowing devices with undirected porosity. They are ideal for oxidative purging in a crowded ladle with a mixture of argon and oxygen required for the production of ultra-low carbon steel with an oxygen content of less than 0.03%. The purpose of further research is to develop the design of the mixing chamber of the purge device, in which oxygen and argon are pre-mixed before injection into the liquid metal.


2021 ◽  
Vol 347 ◽  
pp. 00025
Author(s):  
Quinn G. Reynolds ◽  
Oliver F. Oxtoby ◽  
Markus W. Erwee ◽  
Pieter J.A. Bezuidenhout

Multiphase fluid flow is an active field of research in numerous branches of science and technology. An interesting subset of multiphase flow problems involves the dispersion of one phase into another in the form of many small bubbles or droplets, and their subsequent separation back into bulk phases after this has occurred. Phase dispersion may be a desirable effect, for example in the production of emulsions of otherwise immiscible liquids or to increase interfacial surface area for chemical reactions, or an undesirable one, for example in the intermixing of waste and product phases during processing or the generation of foams preventing gas-liquid decoupling. The present paper describes a computational fluid dynamics method based on the multiple marker front-capturing algorithm – itself an extension of the volume-of-fluids method for multiphase flow – which is capable of scaling to mesoscale systems involving thousands of droplets or bubbles. The method includes sub-grid models for solution of the Reynolds equation to account for thin film dynamics and rupture. The method is demonstrated with an implementation in the OpenFOAM® computational mechanics framework. Comparisons against empirical data are presented, together with a performance benchmarking study and example applications.


Sign in / Sign up

Export Citation Format

Share Document