Low Oxygen Tension is Critical for the Culture of Human Mesenchymal Stem Cells with Strong Osteogenic Potential from Haemarthrosis Fluid

2013 ◽  
Vol 9 (5) ◽  
pp. 599-608 ◽  
Author(s):  
Callie A. Knuth ◽  
Marcia E. Clark ◽  
Annette P. Meeson ◽  
Sameer K. Khan ◽  
Daniel J. Dowen ◽  
...  
2011 ◽  
Vol 19 (5) ◽  
pp. 743-755 ◽  
Author(s):  
J C Estrada ◽  
C Albo ◽  
A Benguría ◽  
A Dopazo ◽  
P López-Romero ◽  
...  

2021 ◽  
Vol 66 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Marco Govoni ◽  
Claudio Muscari ◽  
Francesca Bonafè ◽  
Paolo Giovanni Morselli ◽  
Marilisa Cortesi ◽  
...  

Author(s):  
Samia Rahman ◽  
Alexander R. A. Szojka ◽  
Yan Liang ◽  
Melanie Kunze ◽  
Victoria Goncalves ◽  
...  

ObjectiveArticular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1–5%) microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist physiologically within a similar range of oxygen tension. A low oxygen tension of 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue-sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to drive the in vitro chondrogenesis of IFP-MSC. We hypothesized that 2% O2 will induce stable chondrogenesis in human IFP-MSC without the risk of undergoing endochondral ossification at ectopic sites of implantation.MethodsMicromass pellets of human IFP-MSC were cultured under 2% O2 or 21% O2 (normal atmosphere O2) in the presence or absence of chondrogenic medium with transforming growth factor-β3 (TGFβ3) for 3 weeks. Following in vitro chondrogenesis, the resulting pellets were implanted in immunodeficient athymic nude mice for 3 weeks.ResultsA low oxygen tension of 2% was unable to induce chondrogenesis in human IFP-MSC. In contrast, chondrogenic medium with TGFβ3 induced in vitro chondrogenesis. All pellets were devoid of any evidence of undergoing endochondral ossification after subcutaneous implantation in athymic mice.


Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1386-1397 ◽  
Author(s):  
Amer Youssef ◽  
Cristiana Iosef ◽  
Victor K.M. Han

The microenvironment of placental mesenchymal stem cells (PMSCs) is dynamic throughout gestation and determines changes in cell fate. In vivo, PMSCs initially develop in low-oxygen tension and low IGF-I concentrations, and both increase gradually with gestation. The impact of varying concentrations of IGF-I and changing oxygen tension on PMSC signaling and multipotency was investigated in PMSCs from early (preterm) and late (term) gestation human placentae. Preterm PMSCs had greater proliferative response to IGF-I, which was further enhanced by low-oxygen tension. Low-oxygen tension alone was sufficient to induce ERK1/2 phosphorylation, whereas IGF-I was required for AKT (protein kinase B) phosphorylation. Low-oxygen tension prolonged ERK1/2 and AKT phosphorylation with a slowed phosphorylation decay even in presence of IGF-I. Low-oxygen tension maintained higher levels of IGF-I receptor and insulin receptor substrate 1 that were otherwise decreased by exposure to IGF-I and induced a differential phosphorylation pattern on IGF-I receptorβ and insulin receptor substrate 1. Phosphorylation of ERK1/2 and AKT was different between the preterm and term PMSCs, and phospho-AKT, and not phospho-ERK1/2, was the major determinant of PMSC proliferation and octamer-4 levels. These studies demonstrate that low-oxygen tension regulates the fate of PMSCs from early and late gestations in response to IGF-I, both independently and dependently, via specific signal transduction mechanisms.


Endocrinology ◽  
2016 ◽  
Vol 157 (3) ◽  
pp. 1163-1174 ◽  
Author(s):  
Amer Youssef ◽  
Victor K. M. Han

Abstract Placental mesenchymal stem cells (PMSCs) are readily available multipotent stem cells for potential use in regenerative therapies. For this purpose, PMSCs must be maintained in culture conditions that mimic the in vivo microenvironment. IGFs (IGF-1 and IGF-2) and oxygen tension are low in the placenta in early gestation and increase as pregnancy progresses. IGFs bind to two receptor tyrosine kinases, the IGF-1 receptor (IGF-1R) and the insulin receptor (IR), and their hybrid receptors. We hypothesized that IGF-1 and IGF-2 signal via distinct signaling pathways under low-oxygen tension to maintain PMSC multipotency. In preterm PMSCs, low-oxygen tension increased the expression of IGF-2 and reduced IGF-1. IGF-1 stimulated higher phosphorylation of IGF-1Rβ, ERK1/2, and AKT, which was maintained at steady lower levels by low oxygen tension. PMSC proliferation was increased by IGF-1 more than IGF-2,and was potentiated by low-oxygen tension. This IGF/low oxygen tension-mediated proliferation was receptor dependent because neutralization of the IGF-1R inhibited PMSC proliferation in the presence of IGF-1 and the IR in presence of IGF-2. These findings suggest that both IGF-1R and the IR can participate in mediating IGF signaling in maintaining PMSCs multipotency. We conclude that low-oxygen tension can modify the IGF-1 or IGF-2 signaling via the IGF-1R and IR in PMSCs.


2020 ◽  
Vol 13 (11) ◽  
pp. 2469-2476
Author(s):  
Erma Safitri

Background and Aim: Octamer-binding transcription factor 4 (OCT4) and sex-determining region Y-box 2 (SOX2) are transcription factors whose functions are essential to maintain the pluripotency of embryonic stem cells. The purpose of this study was to derive stem cells for in vitro culture and to maintain their viability and pluripotency, with the goal to obtain a cell line for transplantation in patients with degenerative diseases or injuries. This research focused on examining the effect of low oxygen tension on the ability of bone marrow-derived mesenchymal stem cells (BM-MSCs) to express OCT4 and SOX2 in vitro. Materials and Methods: BM-MSCs were obtained from femurs of 2000 to 3000 g New Zealand male rabbits. BM-MSCs were divided into three groups to test different culture conditions: A control group under hyperoxia condition (21% O2) and two treatment groups with low oxygen tension (1% and 3% O2). We characterized the BM-MSCs using flow cytometric measurement of cluster differentiation 44 (CD44) and cluster differentiation 90 (CD90) expression. The expression of OCT4 and SOX2 was measured by immunofluorescence staining after 48 h of incubation in chambers with normal or low oxygen tension with controlled internal atmosphere consisting of 95% N2, 5% CO2, and 1% O2 (T1) and 3% O2 (T2). We considered OCT4 and SOX2 as two markers of pluripotency induction. All immunofluorescence data were subjected to a post hoc normality Tukey's honestly significant difference test; all differences with p<5% were considered significant. Results: BM-MSCs were positive for CD44 and CD90 expression after isolation. Oxygen tension culture conditions of 1% and 3% O2 led to OCT4 and SOX2 expression on culture days 2 and 4 (p<0.05), respectively, as compared to the hyperoxia condition (21% O2). Conclusion: Based on the OCT4 and SOX2 immunofluorescence data, we conclude that the stem cells were pluripotent at low O2 tension (at 1% O2 on day 2 and at 3% O2 on day 4), whereas under 21% O2 the OCT4 and SOX2 were not expressed.


2016 ◽  
Vol 21 (6) ◽  
pp. 1089-1099 ◽  
Author(s):  
Dae Seong Kim ◽  
Young Jong Ko ◽  
Myoung Woo Lee ◽  
Hyun Jin Park ◽  
Yoo Jin Park ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Amer Youssef ◽  
Victor K. M. Han

Placental mesenchymal stem cells (PMSCs) are multipotent cells that can differentiate in vitro to multiple lineages, including bone. Insulin-like growth factors (IGFs, IGF-1 and IGF-2) participate in maintaining growth, survival, and differentiation of many stem cells, including osteoprogenitors. Low oxygen tension (PO2) can maintain stem cell multipotency and impede osteogenic differentiation. In this study, we investigated whether PMSC osteogenic differentiation is influenced by low PO2 and by IGFs. Our results indicated that low PO2 decreased osteogenic markers RUNX2 and OPN; however, re-exposure to higher oxygen tension (room air) restored differentiation. IGFs, especially IGF-1, triggered an earlier expression of RUNX2 and enhanced OPN and mineralization. RUNX2 was phosphorylated in room air and augmented by IGFs. IGF-1 receptor (IGF-1R) was increased in low PO2 and reduced by IGFs, while insulin receptor (IR) was increased in differentiating PMSCs and enhanced by IGF-1. Low PO2 and IGFs maintained higher IR-A which was switched to IR-B in room air. PI3K/AKT was required for osteogenic differentiation, while MEK/ERK was required to repress an RUNX2 and OPN increase in low PO2. Therefore, IGFs, specifically IGF-1, trigger the earlier onset of osteogenic differentiation in room air, whereas, reversibly, low PO2 impedes complete differentiation by maintaining higher multipotency and lower differentiation markers.


Sign in / Sign up

Export Citation Format

Share Document