low oxygen tension
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 26)

H-INDEX

42
(FIVE YEARS 4)

Author(s):  
Samia Rahman ◽  
Alexander R. A. Szojka ◽  
Yan Liang ◽  
Melanie Kunze ◽  
Victoria Goncalves ◽  
...  

ObjectiveArticular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1–5%) microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist physiologically within a similar range of oxygen tension. A low oxygen tension of 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue-sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to drive the in vitro chondrogenesis of IFP-MSC. We hypothesized that 2% O2 will induce stable chondrogenesis in human IFP-MSC without the risk of undergoing endochondral ossification at ectopic sites of implantation.MethodsMicromass pellets of human IFP-MSC were cultured under 2% O2 or 21% O2 (normal atmosphere O2) in the presence or absence of chondrogenic medium with transforming growth factor-β3 (TGFβ3) for 3 weeks. Following in vitro chondrogenesis, the resulting pellets were implanted in immunodeficient athymic nude mice for 3 weeks.ResultsA low oxygen tension of 2% was unable to induce chondrogenesis in human IFP-MSC. In contrast, chondrogenic medium with TGFβ3 induced in vitro chondrogenesis. All pellets were devoid of any evidence of undergoing endochondral ossification after subcutaneous implantation in athymic mice.


Author(s):  
Deepa R.

Oxygen is one of the most important necessities in our life such as air, water, food and vitamins. Deficiency in either the delivery or the utilization of oxygen at the tissue level leading to changes in functions, metabolisms and structures of cells and tissues of the body. A variety of pathological condition exist where the affected tissues are hypoxic or exhibit a low oxygen tension. Each of the billions of cells that make up the human body requires an adequate supply of oxygen for survival and optimum functioning. Cells and organisms are able to trigger an adaptive response to hypoxic conditions that is aimed to help them to cope with the life threatening conditions.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

2021 ◽  
Vol 66 (1) ◽  
pp. 98-104 ◽  
Author(s):  
Marco Govoni ◽  
Claudio Muscari ◽  
Francesca Bonafè ◽  
Paolo Giovanni Morselli ◽  
Marilisa Cortesi ◽  
...  

Zygote ◽  
2021 ◽  
pp. 1-11
Author(s):  
Nasser Ghanem ◽  
Dalia Abd-El Rahman Ahmed ◽  
Sherif Mohamed Dessouki ◽  
Marwa Said Faheem ◽  
Ahmed Yehia Gad ◽  
...  

Summary This study was conducted to monitor the cellular and molecular changes of buffalo cumulus–oocytes complexes (COCs) cultured under high or low oxygen levels. Morphologically good quality COCs (n = 1627) were screened using brilliant cresyl blue (BCB) staining and placed into three groups (BCB+, BCB− and control). All groups of COCs were cultured under low (5%) or high (20%) oxygen tensions. Intracellular and molecular changes including oocyte ultrastructure, lipid contents, mitochondrial activity and transcript abundance of genes regulating different pathways were analyzed in the matured oocyte groups. The results revealed that oxygen tension did not affect cumulus expansion rates, however the BCB+ group had a higher (P ≤ 0.05) expansion rate compared with the BCB− group. BCB− oocytes recorded the lowest meiotic progression rate (P ≤ 0.05) under high oxygen levels that was linked with an increased level of reactive oxygen species (ROS) compared with the BCB+ oocytes. Ultrastructure examination indicated that BCB+ oocytes had a higher rate of cortical granules migration compared with BCB− under low oxygen tension. In parallel, our results indicated the upregulation of NFE2L2 in groups of oocytes cultured under high oxygen tension that was coupled with reduced mitochondrial activity. In contrast, the expression levels of MAPK14 and CPT2 genes were increased (P ≤ 0.05) in groups of oocytes cultured under low compared with high oxygen tension that was subsequently associated with increased mitochondrial activity. In conclusion, data from the present investigation indicated that low oxygen tension is a favourable condition for maintaining the mitochondrial activity required for nuclear maturation of buffalo oocytes. However, low-quality oocytes (BCB−) responded negatively to high oxygen tension by reducing the expression of gene-regulating metabolic activity (CPT2). This action was an attempt by BCB− oocytes to reduce the increased levels of endogenously produced ROS that was coupled with decreased expression of the gene controlling meiotic progression (MAPK14) in addition to nuclear maturation rate.


FEBS Letters ◽  
2020 ◽  
Author(s):  
Ludwik Gorczyca ◽  
Jianyao Du ◽  
Kristin M. Bircsak ◽  
Xia Wen ◽  
Anna M. Vetrano ◽  
...  

2020 ◽  
Vol 330 ◽  
pp. 90-95
Author(s):  
L. Hernández-Gutiérrez ◽  
R. Camacho-Carranza ◽  
S.L. Hernández-Ojeda ◽  
T. Govezensky ◽  
S.R. Olguín-Reyes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document