differentiation markers
Recently Published Documents


TOTAL DOCUMENTS

877
(FIVE YEARS 260)

H-INDEX

66
(FIVE YEARS 7)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Seigo Usuki ◽  
Noriko Tamura ◽  
Tomohiro Tamura ◽  
Kohei Yuyama ◽  
Daisuke Mikami ◽  
...  

Histamines suppress epidermal keratinocyte differentiation. Previously, we reported that konjac ceramide (kCer) suppresses histamine-stimulated cell migration of HaCaT keratinocytes. kCer specifically binds to Nrp1 and does not interact with histamine receptors. The signaling mechanism of kCer in HaCaT cells is also controlled by an intracellular signaling cascade activated by the Sema3A-Nrp1 pathway. In the present study, we demonstrated that kCer treatment induced HaCaT keratinocyte differentiation after migration of immature cells. kCer-induced HaCaT cell differentiation was accompanied by some features of keratinocyte differentiation markers. kCer induced activating phosphorylation of p38MAPK and c-Fos, which increased the protein levels of involucrin that was the latter differentiation marker. In addition, we demonstrated that the effects of both kCer and histamines are regulated by an intracellular mechanism of Rac1 activation/RhoA inhibition downstream of the Sema3A/Nrp1 receptor and histamine/GPCR pathways. In summary, the effects of kCer on cell migration and cell differentiation are regulated by cascade crosstalk between downstream Nrp1 and histamine-GPCR pathways in HaCaT cells.


Author(s):  
Carlos Garcia-Padilla ◽  
Francisco Hernandez-Torres ◽  
Estefania Lozano-Velasco ◽  
Angel Dueñas ◽  
Maria del Mar Muñoz-Gallardo ◽  
...  

Bmp and Fgf signaling are widely involved in multiple aspects of embryonic development. More recently non coding RNAs, such as microRNAs have also been reported to play essential roles during embryonic development. We have previously demonstrated that microRNAs, i.e., miR-130, play an essential role modulating Bmp and Fgf signaling during early stages of cardiomyogenesis. More recently, we have also demonstrated that microRNAs are capable of modulating cell fate decision during proepicardial/septum transversum (PE/ST) development, since over-expression of miR-23 blocked while miR-125, miR-146, miR-223 and miR-195 enhanced PE/ST-derived cardiomyogenesis, respectively. Importantly, regulation of these microRNAs is distinct modulated by Bmp2 and Fgf2 administration in chicken. In this study, we aim to dissect the functional role of Bmp and Fgf signaling during mouse PE/ST development, their implication regulating post-transcriptional modulators such as microRNAs and their impact on lineage determination. Mouse PE/ST explants and epicardial/endocardial cell cultures were distinctly administrated Bmp and Fgf family members. qPCR analyses of distinct microRNAs, cardiomyogenic, fibrogenic differentiation markers as well as key elements directly epithelial to mesenchymal transition were evaluated. Our data demonstrate that neither Bmp2/Bmp4 nor Fgf2/Fgf8 signaling is capable of inducing cardiomyogenesis, fibrogenesis or inducing EMT in mouse PE/ST explants, yet deregulation of several microRNAs is observed, in contrast to previous findings in chicken PE/ST. RNAseq analyses in mouse PE/ST and embryonic epicardium identified novel Bmp and Fgf family members that might be involved in such cell fate differences, however, their implication on EMT induction and cardiomyogenic and/or fibrogenic differentiation is limited. Thus our data support the notion of species-specific differences regulating PE/ST cardiomyogenic lineage commitment.


Author(s):  
Wen-Ming Wang ◽  
Chao Wu ◽  
Yi-Meng Gao ◽  
Hong-Zhong Jin

IntroductionPsoriasis is a recurrent, chronic inflammatory skin disease with complex pathogenesis. The disease imposes a heavy burden on patients. Interleukin (IL)-36γ belongs to the IL-36 family and is predominantly expressed by epithelial cells. IL-36γ is upregulated in psoriasis lesions. However, the effects of IL-36γ in keratinocytes remain unclear.Material and methodsEighteen IL-36γ-deficient mice were divided into three groups: the vaseline group, the imiquimod (IMQ) group, and the IMQ/IL-36γ group. Vaseline or IMQ was administered for 6 consecutive days. The severity of psoriasis-like lesions was evaluated using a modified Psoriasis Area and Severity Index (PASI) scoring system. Production of cytokines and expression of differentiation markers were assessed by immunohistochemistry.ResultsIMQ-induced psoriasis lesions were significantly more severe in IMQ/IL-36γ-treated mice compared with vaseline-treated and IMQ-treated mice, as shown by an exacerbated inflammatory phenotype, increased numbers of blood vessels, increased infiltration of cells, and increased epidermal thickness. Expression of loricrin and keratin 5 in skin lesions was decreased following treatment with IL-36γ. Levels of IL-17A, interferon-γ, β-catenin and Dickkopf-related protein 1 were elevated in keratinocytes within psoriatic lesions following IL-36γ stimulation.ConclusionsTogether, these data showed that IL-36γ contribute to abnormal keratinocytes proliferation and keratinocyte-related proinflammatory cytokines, and suggest that IL-36γ may play an important role in the pathogenesis of psoriasis.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 81
Author(s):  
Natalia Leciejewska ◽  
Ewa Pruszyńska-Oszmałek ◽  
Karolina Mielnik ◽  
Maciej Głowacki ◽  
Tomasz P. Lehmann ◽  
...  

SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 43
Author(s):  
Maria V. Yusenko ◽  
Abhiruchi Biyanee ◽  
Daria Frank ◽  
Leonhard H. F. Köhler ◽  
Mattias K. Andersson ◽  
...  

Studies of the role of MYB in human malignancies have highlighted MYB as a potential drug target for acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Here, we present the initial characterization of 2-amino-4-(3,4,5-trimethoxyphenyl)-4H-naphtho[1,2-b]pyran-3-carbonitrile (Bcr-TMP), a nanomolar-active MYB-inhibitory compound identified in a screen for novel MYB inhibitors. Bcr-TMP affects MYB function in a dual manner by inducing its degradation and suppressing its transactivation potential by disrupting its cooperation with co-activator p300. Bcr-TMP also interferes with the p300-dependent stimulation of C/EBPβ, a transcription factor co-operating with MYB in myeloid cells, indicating that Bcr-TMP is a p300-inhibitor. Bcr-TMP reduces the viability of AML cell lines at nanomolar concentrations and induces cell-death and expression of myeloid differentiation markers. It also down-regulates the expression of MYB target genes and exerts stronger anti-proliferative effects on MYB-addicted primary murine AML cells and patient-derived ACC cells than on their non-oncogenic counterparts. Surprisingly, we observed that Bcr-TMP also has microtubule-disrupting activity, pointing to a possible link between MYB-activity and microtubule stability. Overall, Bcr-TMP is a highly potent multifunctional MYB-inhibitory agent that warrants further investigation of its therapeutic potential and mechanism(s) of action.


2021 ◽  
Author(s):  
Laura Barbieri ◽  
Pedro Veliça ◽  
Paulo A Gameiro ◽  
Pedro P Cunha ◽  
Iosifina P Foskolou ◽  
...  

CD8+ T cells infiltrate virtually every tissue to find and destroy infected or mutated cells. They often traverse varying oxygen levels and nutrient-deprived microenvironments. High glycolytic activity in tissues can result in extended exposure of cytotoxic T cells to the metabolite lactate. Lactate can be immunosuppressive, at least in part due to its association with tissue acidosis. We show here that the lactate anion is well tolerated by CD8+ T cells in pH neutral conditions. We describe how lactate is taken up by activated CD8+ T cells and is capable of displacing glucose as a carbon source. Activation in the presence of a pH neutral form of lactate significantly alters the CD8+ T cell transcriptome, including the expression of key effector differentiation markers such as granzyme B and interferon-gamma. Our studies reveal the novel metabolic features of lactate utilization by activated CD8+ T cells, and highlight the importance of lactate in shaping the differentiation and activity of cytotoxic T cells.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010152
Author(s):  
Sara P. H. van den Berg ◽  
Lyanne Y. Derksen ◽  
Julia Drylewicz ◽  
Nening M. Nanlohy ◽  
Lisa Beckers ◽  
...  

Cytomegalovirus (CMV) infection has a major impact on the T-cell pool, which is thought to be associated with ageing of the immune system. The effect on the T-cell pool has been interpreted as an effect of CMV on non-CMV specific T-cells. However, it remains unclear whether the effect of CMV could simply be explained by the presence of large, immunodominant, CMV-specific memory CD8+ T-cell populations. These have been suggested to establish through gradual accumulation of long-lived cells. However, little is known about their maintenance. We investigated the effect of CMV infection on T-cell dynamics in healthy older adults, and aimed to unravel the mechanisms of maintenance of large numbers of CMV-specific CD8+ T-cells. We studied the expression of senescence, proliferation, and apoptosis markers and quantified the in vivo dynamics of CMV-specific and other memory T-cell populations using in vivo deuterium labelling. Increased expression of late-stage differentiation markers by CD8+ T-cells of CMV+ versus CMV- individuals was not solely explained by the presence of large, immunodominant CMV-specific CD8+ T-cell populations. The lifespans of circulating CMV-specific CD8+ T-cells did not differ significantly from those of bulk memory CD8+ T-cells, and the lifespans of bulk memory CD8+ T-cells did not differ significantly between CMV- and CMV+ individuals. Memory CD4+ T-cells of CMV+ individuals showed increased expression of late-stage differentiation markers and decreased Ki-67 expression. Overall, the expression of senescence markers on T-cell populations correlated positively with their expected in vivo lifespan. Together, this work suggests that i) large, immunodominant CMV-specific CD8+ T-cell populations do not explain the phenotypical differences between CMV+ and CMV- individuals, ii) CMV infection hardly affects the dynamics of the T-cell pool, and iii) large numbers of CMV-specific CD8+ T-cells are not due to longer lifespans of these cells.


2021 ◽  
Author(s):  
Takafumi Ikeda ◽  
Kiichi Inamori ◽  
Toru Kawanishi ◽  
Hiroyuki Takeda

Kupffer's vesicle (KV) in the teleost embryo is a fluid-filled vesicle surrounded by a layer of epithelial cells with rotating primary cilia. KV transiently acts as the left-right organizer but degenerates after the establishment of left-right asymmetric gene expression. Previous labelling experiments indicated that descendants of KV-epithelial cells are incorporated into mesodermal tissues after KV collapses (KV-collapse) in zebrafish embryos. However, the overall picture of their differentiation potency had been unclear due to the lack of suitable genetic tools and molecular analyses. In the present study, we established a novel zebrafish transgenic line with a promoter of charon, in which all KV-epithelial cells and their descendants are specifically labelled until the larval stage. We found that KV-epithelial cells underwent epithelial-mesenchymal transition upon KV-collapse and infiltrate into adjacent mesodermal progenitors, the presomitic mesoderm and chordoneural hinge. Once incorporated, the descendants of KV-epithelial cells expressed distinct mesodermal differentiation markers and contributed to the mature populations such as the axial muscles and notochordal sheath through normal developmental process. These results indicate that fully differentiated KV-epithelial cells possess unique plasticity in that they are reemployed into mesodermal lineages through transdifferentiation after they complete their initial role in KV.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2638
Author(s):  
Masao Yamasaki ◽  
Yusei Kiue ◽  
Kento Fujii ◽  
Moe Sushida ◽  
Yumi Yamasaki ◽  
...  

Blueberry (Vaccinium virgatum Aiton; Kinisato 35 Gou) leaves have recently attracted increasing attention as a useful material for the prevention of lifestyle diseases. Here, we examined the effects of the hot water extract of blueberry leaves (BLEx) on lipogenesis and uric acid production in 3T3-L1 adipocytes. The results showed that BLEx suppressed lipid accumulation and the mRNA expression of differentiation markers in 3T3-L1 adipocytes. A fractionation study showed that the highly polymerized proanthocyanidin-rich fraction was responsible for this effect. Upon maturation to adipocytes, 3T3-L1 cells produced uric acid and tumor necrosis factor-α, and hypoxia stimulated the production of uric acid and xanthine oxidoreductase activity. BLEx suppressed the production of uric acid under these conditions. Although BLEx inhibited the enzymatic activity of xanthine oxidase, this activity was observed in several fractions containing catechin, epicatechin, chlorogenic acid, rutin, and low molecular weight proanthocyanidins. Taken together, these results indicate that BLEx contains various compounds with the ability to suppress lipid accumulation and uric acid production in adipocytes.


2021 ◽  
Vol 22 (23) ◽  
pp. 12703
Author(s):  
Frederike Hohenbild ◽  
Marcela Arango Ospina ◽  
Sarah I. Schmitz ◽  
Arash Moghaddam ◽  
Aldo R. Boccaccini ◽  
...  

Magnesium (Mg2+) is known to play a crucial role in mineral and matrix metabolism of bone tissue and is thus increasingly considered in the field of bone tissue engineering. Bioactive glasses (BGs) offer the promising possibility of the incorporation and local delivery of therapeutically active ions as Mg2+. In this study, two Mg2+-doped derivatives of the ICIE16-BG composition (49.46 SiO2, 36.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O (mol%)), namely 6Mg-BG (49.46 SiO2, 30.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 6.0 MgO (mol%) and 3Mg-BG (49.46 SiO2, 33.27 CaO, 6.6 Na2O, 1.07 P2O5, 6.6 K2O, 3.0 MgO (mol%)) were examined. Their influence on viability, proliferation and osteogenic differentiation of human mesenchymal stromal cells (MSCs) was explored in comparison to the original ICIE16-BG. All BGs showed good biocompatibility. The Mg2+-doped BGs had a positive influence on MSC viability alongside with inhibiting effects on MSC proliferation. A strong induction of osteogenic differentiation markers was observed, with the Mg2+-doped BGs significantly outperforming the ICIE16-BG regarding the expression of genes encoding for protein members of the osseous extracellular matrix (ECM) at certain observation time points. However, an overall Mg2+-induced enhancement of the expression of genes encoding for ECM proteins could not be observed, possibly due to a too moderate Mg2+ release. By adaption of the Mg2+ release from BGs, an even stronger impact on the expression of genes encoding for ECM proteins might be achieved. Furthermore, other BG-types such as mesoporous BGs might provide a higher local presence of the therapeutically active ions and should therefore be considered for upcoming studies.


Sign in / Sign up

Export Citation Format

Share Document