Low-Dose and High-Dose Synacthen Tests and the Hemodynamic Response to Hydrocortisone in Acute Traumatic Brain Injury

2009 ◽  
Vol 11 (2) ◽  
pp. 158-164 ◽  
Author(s):  
R. S. Wijesurendra ◽  
F. Bernard ◽  
J. Outtrim ◽  
B. Maiya ◽  
S. Joshi ◽  
...  
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Bin Zhang ◽  
Miao Bai ◽  
Xiaojian Xu ◽  
Mengshi Yang ◽  
Fei Niu ◽  
...  

Abstract Background We previously found that high-dose methylprednisolone increased the incidence of critical illness-related corticosteroid insufficiency (CIRCI) and mortality in rats with traumatic brain injury (TBI), whereas low-dose hydrocortisone but not methylprednisolone exerted protective effects. However, the receptor-mediated mechanism remains unclear. This study investigated the receptor-mediated mechanism of the opposite effects of different glucocorticoids on the survival of paraventricular nucleus (PVN) cells and the incidence of CIRCI after TBI. Methods Based on controlled cortical impact (CCI) and treatments, male SD rats (n = 300) were randomly divided into the sham, CCI, CCI + GCs (methylprednisolone 1 or 30 mg/kg/day; corticosterone 1 mg/kg/day), CCI + methylprednisolone+RU486 (RU486 50 mg/kg/day), and CCI + corticosterone+spironolactone (spironolactone 50 mg/kg/day) groups. Blood samples were collected 7 days before and after CCI. Brain tissues were collected on postinjury day 7 and processed for histology and western blot analysis. Results We examined the incidence of CIRCI, mortality, apoptosis in the PVN, the receptor-mediated mechanism, and downstream signaling pathways on postinjury day 7. We found that methylprednisolone and corticosterone exerted opposite effects on the survival of PVN cells and the incidence of CIRCI by activating different receptors. High-dose methylprednisolone increased the nuclear glucocorticoid receptor (GR) level and subsequently increased cell loss in the PVN and the incidence of CIRCI. In contrast, low-dose corticosterone but not methylprednisolone played a protective role by upregulating mineralocorticoid receptor (MR) activation. The possible downstream receptor signaling mechanism involved the differential effects of GR and MR on the activity of the Akt/CREB/BDNF pathway. Conclusion The excessive activation of GR by high-dose methylprednisolone exacerbated apoptosis in the PVN and increased CIRCI. In contrast, refilling of MR by corticosterone protects PVN neurons and reduces the incidence of CIRCI by promoting GR/MR rebalancing after TBI.


2008 ◽  
Author(s):  
Mercedes A. La Voy ◽  
John M. Roll ◽  
Traci Adair

2015 ◽  
Vol 83 (4) ◽  
pp. 567-573 ◽  
Author(s):  
Bin-Fei Zhang ◽  
Jiao Wang ◽  
Zun-Wei Liu ◽  
Yong-Lin Zhao ◽  
Dan-Dong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document