Critical Thresholds for Cerebrovascular Reactivity After Traumatic Brain Injury

2011 ◽  
Vol 16 (2) ◽  
pp. 258-266 ◽  
Author(s):  
E. Sorrentino ◽  
J. Diedler ◽  
M. Kasprowicz ◽  
K. P. Budohoski ◽  
C. Haubrich ◽  
...  
2020 ◽  
Vol 132 (6) ◽  
pp. 1952-1960 ◽  
Author(s):  
Seung-Bo Lee ◽  
Hakseung Kim ◽  
Young-Tak Kim ◽  
Frederick A. Zeiler ◽  
Peter Smielewski ◽  
...  

OBJECTIVEMonitoring intracranial and arterial blood pressure (ICP and ABP, respectively) provides crucial information regarding the neurological status of patients with traumatic brain injury (TBI). However, these signals are often heavily affected by artifacts, which may significantly reduce the reliability of the clinical determinations derived from the signals. The goal of this work was to eliminate signal artifacts from continuous ICP and ABP monitoring via deep learning techniques and to assess the changes in the prognostic capacities of clinical parameters after artifact elimination.METHODSThe first 24 hours of monitoring ICP and ABP in a total of 309 patients with TBI was retrospectively analyzed. An artifact elimination model for ICP and ABP was constructed via a stacked convolutional autoencoder (SCAE) and convolutional neural network (CNN) with 10-fold cross-validation tests. The prevalence and prognostic capacity of ICP- and ABP-related clinical events were compared before and after artifact elimination.RESULTSThe proposed SCAE-CNN model exhibited reliable accuracy in eliminating ABP and ICP artifacts (net prediction rates of 97% and 94%, respectively). The prevalence of ICP- and ABP-related clinical events (i.e., systemic hypotension, intracranial hypertension, cerebral hypoperfusion, and poor cerebrovascular reactivity) all decreased significantly after artifact removal.CONCLUSIONSThe SCAE-CNN model can be reliably used to eliminate artifacts, which significantly improves the reliability and efficacy of ICP- and ABP-derived clinical parameters for prognostic determinations after TBI.


2018 ◽  
Vol 35 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Frederick A. Zeiler ◽  
Danilo Cardim ◽  
Joseph Donnelly ◽  
David K. Menon ◽  
Marek Czosnyka ◽  
...  

2010 ◽  
Vol 14 (2) ◽  
pp. 188-193 ◽  
Author(s):  
Enrico Sorrentino ◽  
Karol P. Budohoski ◽  
Magdalena Kasprowicz ◽  
Peter Smielewski ◽  
Basil Matta ◽  
...  

2012 ◽  
Vol 124 (3) ◽  
pp. 177-189 ◽  
Author(s):  
Damian M. Bailey ◽  
Daniel W. Jones ◽  
Andrew Sinnott ◽  
Julien V. Brugniaux ◽  
Karl J. New ◽  
...  

The present study examined to what extent professional boxing compromises cerebral haemodynamic function and its association with CTBI (chronic traumatic brain injury). A total of 12 male professional boxers were compared with 12 age-, gender- and physical fitness-matched non-boxing controls. We assessed dCA (dynamic cerebral autoregulation; thigh-cuff technique and transfer function analysis), CVRCO2 (cerebrovascular reactivity to changes in CO2: 5% CO2 and controlled hyperventilation), orthostatic tolerance (supine to standing) and neurocognitive function (psychometric tests). Blood flow velocity in the middle cerebral artery (transcranial Doppler ultrasound), mean arterial blood pressure (finger photoplethysmography), end-tidal CO2 (capnography) and cortical oxyhaemoglobin concentration (near-IR spectroscopy) were continuously measured. Boxers were characterized by fronto-temporal neurocognitive dysfunction and impaired dCA as indicated by a lower rate of regulation and autoregulatory index (P<0.05 compared with controls). Likewise, CVRCO2 was also reduced resulting in a lower CVRCO2 range (P<0.05 compared with controls). The latter was most marked in boxers with the highest CTBI scores and correlated against the volume and intensity of sparring during training (r=−0.84, P<0.05). These impairments coincided with more marked orthostatic hypotension, cerebral hypoperfusion and corresponding cortical de-oxygenation during orthostatic stress (P<0.05 compared with controls). In conclusion, these findings provide the first comprehensive evidence for chronically impaired cerebral haemodynamic function in active boxers due to the mechanical trauma incurred by repetitive, sub-concussive head impact incurred during sparring training. This may help explain why CTBI is a progressive disease that manifests beyond the active boxing career.


2018 ◽  
Vol 5 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Kimbra Kenney ◽  
Franck Amyot ◽  
Carol Moore ◽  
Margalit Haber ◽  
L. Christine Turtzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document