scholarly journals The Impact of Vasopressor and Sedative Agents on Cerebrovascular Reactivity and Compensatory Reserve in Traumatic Brain Injury: An Exploratory Analysis

2020 ◽  
Vol 1 (1) ◽  
pp. 157-168
Author(s):  
Logan Froese ◽  
Joshua Dian ◽  
Carleen Batson ◽  
Alwyn Gomez ◽  
Norah Alarifi ◽  
...  
2021 ◽  
Vol 2 (1) ◽  
pp. 488-501
Author(s):  
Carleen Batson ◽  
Logan Froese ◽  
Alwyn Gomez ◽  
Amanjyot Singh Sainbhi ◽  
Kevin Y. Stein ◽  
...  

2015 ◽  
Vol 35 (11) ◽  
pp. 1852-1861 ◽  
Author(s):  
Justin A Long ◽  
Lora T Watts ◽  
Wei Li ◽  
Qiang Shen ◽  
Eric R Muir ◽  
...  

This study investigated the effects of perturbed cerebral blood flow (CBF) and cerebrovascular reactivity (CR) on relaxation time constant (T2), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and behavioral scores at 1 and 3 hours, 2, 7, and 14 days after traumatic brain injury (TBI) in rats. Open-skull TBI was induced over the left primary forelimb somatosensory cortex ( N = 8 and 3 sham). We found the abnormal areas of CBF and CR on days 0 and 2 were larger than those of the T2, ADC, and FA abnormalities. In the impact core, CBF was reduced on day 0, increased to 2.5 times of normal on day 2, and returned toward normal by day 14, whereas in the tissue surrounding the impact, hypoperfusion was observed on days 0 and 2. CR in the impact core was negative, most severe on day 2 but gradually returned toward normal. T2, ADC, and FA abnormalities in the impact core were detected on day 0, peaked on day 2, and pseudonormalized by day 14. Lesion volumes peaked on day 2 and were temporally correlated with forelimb asymmetry and foot-fault scores. This study quantified the effects of perturbed CBF and CR on structural magnetic resonance imaging and behavioral readouts.


2020 ◽  
Vol 162 (11) ◽  
pp. 2695-2706
Author(s):  
Frederick A. Zeiler ◽  
◽  
Ari Ercole ◽  
Manuel Cabeleira ◽  
Nino Stocchetti ◽  
...  

Abstract Background To date, the cerebral physiologic consequences of persistently elevated intracranial pressure (ICP) have been based on either low-resolution physiologic data or retrospective high-frequency data from single centers. The goal of this study was to provide a descriptive multi-center analysis of the cerebral physiologic consequences of ICP, comparing those with normal ICP to those with elevated ICP. Methods The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High-Resolution Intensive Care Unit (HR-ICU) sub-study cohort was utilized. The first 3 days of physiologic recording were analyzed, evaluating and comparing those patients with mean ICP < 15 mmHg versus those with mean ICP > 20 mmHg. Various cerebral physiologic parameters were derived and evaluated, including ICP, brain tissue oxygen (PbtO2), cerebral perfusion pressure (CPP), pulse amplitude of ICP (AMP), cerebrovascular reactivity, and cerebral compensatory reserve. The percentage time and dose above/below thresholds were also assessed. Basic descriptive statistics were employed in comparing the two cohorts. Results 185 patients were included, with 157 displaying a mean ICP below 15 mmHg and 28 having a mean ICP above 20 mmHg. For admission demographics, only admission Marshall and Rotterdam CT scores were statistically different between groups (p = 0.017 and p = 0.030, respectively). The high ICP group displayed statistically worse CPP, PbtO2, cerebrovascular reactivity, and compensatory reserve. The high ICP group displayed worse 6-month mortality (p < 0.0001) and poor outcome (p = 0.014), based on the Extended Glasgow Outcome Score. Conclusions Low versus high ICP during the first 72 h after moderate/severe TBI is associated with significant disparities in CPP, AMP, cerebrovascular reactivity, cerebral compensatory reserve, and brain tissue oxygenation metrics. Such ICP extremes appear to be strongly related to 6-month patient outcomes, in keeping with previous literature. This work provides multi-center validation for previously described single-center retrospective results.


2020 ◽  
Vol 132 (6) ◽  
pp. 1952-1960 ◽  
Author(s):  
Seung-Bo Lee ◽  
Hakseung Kim ◽  
Young-Tak Kim ◽  
Frederick A. Zeiler ◽  
Peter Smielewski ◽  
...  

OBJECTIVEMonitoring intracranial and arterial blood pressure (ICP and ABP, respectively) provides crucial information regarding the neurological status of patients with traumatic brain injury (TBI). However, these signals are often heavily affected by artifacts, which may significantly reduce the reliability of the clinical determinations derived from the signals. The goal of this work was to eliminate signal artifacts from continuous ICP and ABP monitoring via deep learning techniques and to assess the changes in the prognostic capacities of clinical parameters after artifact elimination.METHODSThe first 24 hours of monitoring ICP and ABP in a total of 309 patients with TBI was retrospectively analyzed. An artifact elimination model for ICP and ABP was constructed via a stacked convolutional autoencoder (SCAE) and convolutional neural network (CNN) with 10-fold cross-validation tests. The prevalence and prognostic capacity of ICP- and ABP-related clinical events were compared before and after artifact elimination.RESULTSThe proposed SCAE-CNN model exhibited reliable accuracy in eliminating ABP and ICP artifacts (net prediction rates of 97% and 94%, respectively). The prevalence of ICP- and ABP-related clinical events (i.e., systemic hypotension, intracranial hypertension, cerebral hypoperfusion, and poor cerebrovascular reactivity) all decreased significantly after artifact removal.CONCLUSIONSThe SCAE-CNN model can be reliably used to eliminate artifacts, which significantly improves the reliability and efficacy of ICP- and ABP-derived clinical parameters for prognostic determinations after TBI.


Sign in / Sign up

Export Citation Format

Share Document