Lutein Inhibits the Function of the Transient Receptor Potential A1 Ion Channel in Different In Vitro and In Vivo Models

2011 ◽  
Vol 46 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Györgyi Horváth ◽  
Éva Szőke ◽  
Ágnes Kemény ◽  
Teréz Bagoly ◽  
József Deli ◽  
...  
Author(s):  
Philipp Weinhold ◽  
Luca Villa ◽  
Frank Strittmatter ◽  
Christian Gratzke ◽  
Christian G. Stief ◽  
...  

2019 ◽  
Vol 39 (1) ◽  
pp. 14-36 ◽  
Author(s):  
CD Lindsay ◽  
CM Timperley

The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.


2015 ◽  
Vol 193 (4S) ◽  
Author(s):  
Philipp Weinhold ◽  
Luca Villa ◽  
Frank Strittmatter ◽  
Christian G. Stief ◽  
Christian Gratzke ◽  
...  

2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


2015 ◽  
Vol 93 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Aruni Jha ◽  
Pawan Sharma ◽  
Vidyanand Anaparti ◽  
Min H. Ryu ◽  
Andrew J. Halayko

Airway smooth muscle (ASM) contraction controls the airway caliber. Airway narrowing is exaggerated in obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The mechanism by which ASM tone is dysregulated in disease is not clearly understood. Recent research on ion channels, particularly transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is uncovering new understanding of altered airway function. TRPA1, a member of the TRP channel superfamily, is a chemo-sensitive cation channel that can be activated by a variety of external and internal stimuli, leading to the influx of Ca2+. Functional TRPA1 channels have been identified in neuronal and non-neuronal tissues of the lung, including ASM. In the airways, these channels can regulate the release of mediators that are markers of airway inflammation in asthma and COPD. For, example, TRPA1 controls cigarette-smoke-induced inflammatory mediator release and Ca2+ mobilization in vitro and in vivo, a response tied to disease pathology in COPD. Recent work has revealed that pharmacological or genetic inhibition of TRPA1 inhibits the allergen-induced airway inflammation in vitro and airway hyper-responsiveness (AHR) in vivo. Collectively, it appears that TRPA1 channels may be determinants of ASM contractility and local inflammation control, positioning them as part of novel mechanisms that control (patho)physiological function of airways and ASM.


2013 ◽  
Vol 4 (3) ◽  
pp. 129-136 ◽  
Author(s):  
Ari Koivisto ◽  
Antti Pertovaara

AbstractBackgroundTransient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel permeable to calcium that is expressed on pain-mediating primary afferent nerve fibers. Here we review recent experimental evidence supporting the hypothesis that activation of the TRPA1 channel by reactive compounds generated in diabetes mellitus, such as 4-hydroxynonenal and methylglyoxal, exerts an important role in the pathophysiology of peripheral diabetic neuropathy (PDN). The hypothesis includes development of the early diabetic pain hypersensitivity and the later loss of cutaneous nerve endings of pain fibers and their dysfunction, which are hallmarks of peripheral diabetic neuropathy (PDN).Methods The evidence for a role of the TRPA1 channel in PDN consists of in vitro patch clamp and calcium imaging data and assessments of pain behavior, axon reflex measurements, and immunohistochemical analyses of cutaneous innervation in an experimental animal model of diabetes. The experiments were combined with blocking the TRPA1 channel with selective antagonists Chembridge-5861528 or A-967079.ResultsIn vitro studies indicate that under physiological concentration of Ca2+, methylglyoxal and 4-hydroxynonenal produce sustained activation of the TRPA1 channel and sustained inflow of calcium. In vivo studies indicate that diabetic pain hypersensitivity is maintained by the TRPA1 channel as indicated by the antihypersensitivity effect induced by acute blocking of the TRPA1 channel. Moreover, TRPA1 channel is involved in the development of diabetic hypersensitivity as indicated by prevention of the development of pain hypersensitivity in diabetic animals treated daily with Chembridge-5861528. The diabetes-induced loss of substance P-like cutaneous innervation and that of the TRPA1 channel-mediated cutaneous axon reflex function during the later phase of diabetes were also prevented or delayed by prolonged blocking of the TRPA1 channel. No motor impairment or other obvious side-effects were observed following block of the TRPA1 channel.Conclusions Together the in vitro and in vivo results indicate that reactive compounds generated in diabetes exert, through action on the TRPA1 channel, an important role in the pathophysiology of PDN. Sustained activation of the TRPA1 channel is a plausible mechanism that contributes to the early diabetic pain hypersensitivity and the later loss of cutaneous pain fiber endings and their dysfunction with prolonged diabetes.ImplicationsBlocking the TRPA1 channel with a selective antagonist provides a promising disease-modifying treatment for PDN, with only minor, if any, side-effects.


2008 ◽  
Vol 27 (3) ◽  
pp. 605-611 ◽  
Author(s):  
Xu-Feng Zhang ◽  
Jun Chen ◽  
Connie R. Faltynek ◽  
Robert B. Moreland ◽  
Torben R. Neelands

Sign in / Sign up

Export Citation Format

Share Document