scholarly journals The 2-rank of the class group of some real cyclic quartic number fields

2021 ◽  
Vol 131 (1) ◽  
Author(s):  
Abdelmalek Azizi ◽  
Mohammed Tamimi ◽  
Abdelkader Zekhnini
Keyword(s):  
Author(s):  
Chris Bruce

Abstract We compute the KMS (equilibrium) states for the canonical time evolution on C*-algebras from actions of congruence monoids on rings of algebraic integers. We show that for each $\beta \in [1,2]$, there is a unique KMS$_\beta $ state, and we prove that it is a factor state of type III$_1$. There are phase transitions at $\beta =2$ and $\beta =\infty $ involving a quotient of a ray class group. Our computation of KMS and ground states generalizes the results of Cuntz, Deninger, and Laca for the full $ax+b$-semigroup over a ring of integers, and our type classification generalizes a result of Laca and Neshveyev in the case of the rational numbers and a result of Neshveyev in the case of arbitrary number fields.


2021 ◽  
pp. 13-26
Author(s):  
Mohamed Mahmoud Chems-Eddin ◽  
Abdelmalek Azizi ◽  
Abdelkader Zekhnini

2015 ◽  
Vol 100 (1) ◽  
pp. 21-32
Author(s):  
ELLIOT BENJAMIN ◽  
C. SNYDER

Using the elements of order four in the narrow ideal class group, we construct generators of the maximal elementary $2$-class group of real quadratic number fields with even discriminant which is a sum of two squares and with fundamental unit of positive norm. We then give a characterization of when two of these generators are equal in the narrow sense in terms of norms of Gaussian integers.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250087 ◽  
Author(s):  
ANDREAS PHILIPP

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.


1994 ◽  
Vol 46 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Jurgen Hurrelbrink

AbstractThis is about results on certain regular graphs that yield information about the structure of the ideal class group of quadratic number fields associated with these graphs. Some of the results can be formulated in terms of the quadratic forms x2 + 27y2, x2 + 32y2, x2 + 64y2.


1966 ◽  
Vol 27 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Kenkichi Iwasawa

In the first part of the present paper, we shall make some simple observations on the ideal class groups of algebraic number fields, following the group-theoretical method of Tschebotarew. The applications on cyclotomic fields (Theorems 5, 6) may be of some interest. In the last section, we shall give a proof to a theorem of Kummer on the ideal class group of a cyclotomic field.


Author(s):  
Peter Koymans ◽  
Carlo Pagano

Abstract In $1801$, Gauss found an explicit description, in the language of binary quadratic forms, for the $2$-torsion of the narrow class group and dual narrow class group of a quadratic number field. This is now known as Gauss’s genus theory. In this paper, we extend Gauss’s work to the setting of multi-quadratic number fields. To this end, we introduce and parametrize the categories of expansion groups and expansion Lie algebras, giving an explicit description for the universal objects of these categories. This description is inspired by the ideas of Smith [ 16] in his recent breakthrough on Goldfeld’s conjecture and the Cohen–Lenstra conjectures. Our main result shows that the maximal unramified multi-quadratic extension $L$ of a multi-quadratic number field $K$ can be reconstructed from the set of generalized governing expansions supported in the set of primes that ramify in $K$. This provides a recursive description for the group $\textrm{Gal}(L/\mathbb{Q})$ and a systematic procedure to construct the field $L$. A special case of our main result gives an upper bound for the size of $\textrm{Cl}^{+}(K)[2]$.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelmalek Azizi ◽  
Mohamed Talbi ◽  
Mohammed Talbi

We determine the Hilbert 2-class field tower for some quartic number fields k whose 2-class group Ck,2 is isomorphic to ℤ/2ℤ×ℤ/2ℤ.


2018 ◽  
Vol 237 ◽  
pp. 166-187
Author(s):  
SOSUKE SASAKI

Let $k$ be an imaginary quadratic field with $\operatorname{Cl}_{2}(k)\simeq V_{4}$. It is known that the length of the Hilbert $2$-class field tower is at least $2$. Gerth (On 2-class field towers for quadratic number fields with$2$-class group of type$(2,2)$, Glasgow Math. J. 40(1) (1998), 63–69) calculated the density of $k$ where the length of the tower is $1$; that is, the maximal unramified $2$-extension is a $V_{4}$-extension. In this paper, we shall extend this result for generalized quaternion, dihedral, and semidihedral extensions of small degrees.


Sign in / Sign up

Export Citation Format

Share Document