Application of meta-heuristic algorithm for multi-objective optimization of sustainable supply chain uncertainty

Sadhana ◽  
2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Seyed Davoud Mirghaderi ◽  
Mahmoud Modiri
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Reza Ehtesham Rasi ◽  
Mehdi Sohanian

Purpose The purpose of this paper is to design and optimize economic and environmental dimensions in a sustainable supply chain (SSC) network. This paper developed a mixed-integer linear programing (MILP) model to incorporate economical and environmental data for multi-objective optimization of the SSC network. Design/methodology/approach The overall objective of the present study is to use high-quality raw materials, at the same time the lowest amount of pollution emission and the highest profitability is achieved. The model in the problem is solved using two algorithms, namely, multi-objective genetic and multi-objective particle swarm. In this research, to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system. Findings The differences found between the genetic algorithms (GAs) and the MILP approaches can be explained by handling the constraints and their various logics. The solutions are contrasted with the original crisp model based on either MILP or GA, offering more robustness to the proposed approach. Practical implications The model is applied to Mega Motor company to optimize the sustainability performance of the supply chain i.e. economic (cost), social (time) and environmental (pollution of raw material). The research method has two approaches, namely, applied and mathematical modeling. Originality/value There is limited research designing and optimizing the SSC network. This study is among the first to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system.


2021 ◽  
Vol 13 (24) ◽  
pp. 13617
Author(s):  
Chamari Pamoshika Jayarathna ◽  
Duzgun Agdas ◽  
Les Dawes ◽  
Tan Yigitcanlar

There are several methods available for modeling sustainable supply chain and logistics (SSCL) issues. Multi-objective optimization (MOO) has been a widely used method in SSCL modeling (SSCLM), nonetheless selecting a suitable optimization technique and solution method is still of interest as model performance is highly dependent on decision-making variables of the model development process. This study provides insights from the analysis of 95 scholarly articles to identify research gaps in the MOO for SSCLM and to assist decision-makers in selecting suitable MOO techniques and solution methods. The results of the analysis indicate that economic and environmental aspects of sustainability are the main context of SSCLM, where the social aspect is still limited. More SSCLMs for sourcing, distribution, and transportation phases of the supply chain are required. Additionally, more sophisticated techniques and solution methods, including hybrid metaheuristics approaches, are needed in SSCLM.


Author(s):  
Camila P.S. Tautenhain ◽  
Ana Paula Barbosa-Povoa ◽  
Bruna Mota ◽  
Mariá C.V. Nascimento

Sign in / Sign up

Export Citation Format

Share Document