scholarly journals An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem

Author(s):  
Camila P.S. Tautenhain ◽  
Ana Paula Barbosa-Povoa ◽  
Bruna Mota ◽  
Mariá C.V. Nascimento
2018 ◽  
Vol 189 ◽  
pp. 06001 ◽  
Author(s):  
Fathy Elkazzaz ◽  
Abdelmageed Mahmoud ◽  
Ali Maher

A meta-heuristic algorithm called, the cuckoo search algorithm is proposed in dealing with the multi-objective supply chain model to find the optimum configuration of a given supply chain problem which minimizes the total cost and the total lead-time. The supply chain problem utilized in this study is taken from literature to show the performance of the proposed model; in addition, the results have been compared to those achieved by the bee colony optimization algorithm and genetic algorithm. Those obtained results indicate that the proposed cuckoo search algorithm is able to get better Pareto solutions (non-dominated set) for the supply chain problem.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Reza Ehtesham Rasi ◽  
Mehdi Sohanian

Purpose The purpose of this paper is to design and optimize economic and environmental dimensions in a sustainable supply chain (SSC) network. This paper developed a mixed-integer linear programing (MILP) model to incorporate economical and environmental data for multi-objective optimization of the SSC network. Design/methodology/approach The overall objective of the present study is to use high-quality raw materials, at the same time the lowest amount of pollution emission and the highest profitability is achieved. The model in the problem is solved using two algorithms, namely, multi-objective genetic and multi-objective particle swarm. In this research, to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system. Findings The differences found between the genetic algorithms (GAs) and the MILP approaches can be explained by handling the constraints and their various logics. The solutions are contrasted with the original crisp model based on either MILP or GA, offering more robustness to the proposed approach. Practical implications The model is applied to Mega Motor company to optimize the sustainability performance of the supply chain i.e. economic (cost), social (time) and environmental (pollution of raw material). The research method has two approaches, namely, applied and mathematical modeling. Originality/value There is limited research designing and optimizing the SSC network. This study is among the first to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Heidari ◽  
Din Mohammad Imani ◽  
Mohammad Khalilzadeh

Purpose This paper aims to study the hub transportation system in supply chain networks which would contribute to reducing costs and environmental pollution, as well as to economic development and social responsibility. As not all customers tend to buy green products, several customer groups should be considered in terms of need type. Design/methodology/approach In this paper, a multi-objective hub location problem is developed for designing a sustainable supply chain network based on customer segmentation. It deals with the aspects of economic (cost reduction), environment (minimizing greenhouse gas emissions by the transport sector) and social responsibility (creating employment and community development). The epsilon-constraint method and augmented epsilon-constraint (AEC) method are used to solve the small-sized instances of this multi-objective problem. Due to the non-deterministic polynomial-time hardness of this problem, two non-dominated sorting genetic algorithm-II (NSGA-II) and multi-objective grey wolf optimizer (MOGWO) metaheuristic algorithms are also applied to tackle the large-sized instances of this problem. Findings As expected, the AEC method is able to provide better Pareto solutions according to the goals of the decision-makers. The Taguchi method was used for setting the parameters of the two metaheuristic algorithms. Considering the meaningful difference, the MOGWO algorithm outperforms the NSGA-II algorithm according to the rate of achievement to two objectives simultaneously and the spread of non-dominance solutions indexes. Regarding the other indexes, there was no meaningful difference between the performance of the two algorithms. Practical implications The model of this research provides a comprehensive solution for supply chain companies that want to achieve a rational balance between the three aspects of sustainability. Originality/value The importance of considering customer diversity on the one hand and saving on hub transportation costs, on the other hand, triggered us to propose a hub location model for designing a sustainable supply chain network based on customer segmentation.


2021 ◽  
Vol 13 (24) ◽  
pp. 13617
Author(s):  
Chamari Pamoshika Jayarathna ◽  
Duzgun Agdas ◽  
Les Dawes ◽  
Tan Yigitcanlar

There are several methods available for modeling sustainable supply chain and logistics (SSCL) issues. Multi-objective optimization (MOO) has been a widely used method in SSCL modeling (SSCLM), nonetheless selecting a suitable optimization technique and solution method is still of interest as model performance is highly dependent on decision-making variables of the model development process. This study provides insights from the analysis of 95 scholarly articles to identify research gaps in the MOO for SSCLM and to assist decision-makers in selecting suitable MOO techniques and solution methods. The results of the analysis indicate that economic and environmental aspects of sustainability are the main context of SSCLM, where the social aspect is still limited. More SSCLMs for sourcing, distribution, and transportation phases of the supply chain are required. Additionally, more sophisticated techniques and solution methods, including hybrid metaheuristics approaches, are needed in SSCLM.


Sign in / Sign up

Export Citation Format

Share Document