Backbone and side-chain 1H, 15N and 13C resonance assignments of the microtubule-binding domain of yeast cytoplasmic dynein in the high and low-affinity states

2013 ◽  
Vol 8 (2) ◽  
pp. 379-382 ◽  
Author(s):  
Osamu Takarada ◽  
Noritaka Nishida ◽  
Masahide Kikkawa ◽  
Ichio Shimada
2013 ◽  
Vol 8 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Zsuzsanna Orbán-Németh ◽  
Morkos A. Henen ◽  
Leonhard Geist ◽  
Szymon Żerko ◽  
Saurabh Saxena ◽  
...  

2013 ◽  
Vol 8 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Andras Boeszoermenyi ◽  
Jens C. Schmidt ◽  
Iain M. Cheeseman ◽  
Monika Oberer ◽  
Gerhard Wagner ◽  
...  

2007 ◽  
Vol 176 (5) ◽  
pp. 641-651 ◽  
Author(s):  
Hwajin Kim ◽  
Shuo-Chien Ling ◽  
Gregory C. Rogers ◽  
Comert Kural ◽  
Paul R. Selvin ◽  
...  

Dynactin links cytoplasmic dynein and other motors to cargo and is involved in organizing radial microtubule arrays. The largest subunit of dynactin, p150glued, binds the dynein intermediate chain and has an N-terminal microtubule-binding domain. To examine the role of microtubule binding by p150glued, we replaced the wild-type p150glued in Drosophila melanogaster S2 cells with mutant ΔN-p150 lacking residues 1–200, which is unable to bind microtubules. Cells treated with cytochalasin D were used for analysis of cargo movement along microtubules. Strikingly, although the movement of both membranous organelles and messenger ribonucleoprotein complexes by dynein and kinesin-1 requires dynactin, the substitution of full-length p150glued with ΔN-p150glued has no effect on the rate, processivity, or step size of transport. However, truncation of the microtubule-binding domain of p150glued has a dramatic effect on cell division, resulting in the generation of multipolar spindles and free microtubule-organizing centers. Thus, dynactin binding to microtubules is required for organizing spindle microtubule arrays but not cargo motility in vivo.


Science ◽  
2008 ◽  
Vol 322 (5908) ◽  
pp. 1691-1695 ◽  
Author(s):  
A. P. Carter ◽  
J. E. Garbarino ◽  
E. M. Wilson-Kubalek ◽  
W. E. Shipley ◽  
C. Cho ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Regina L Agulto ◽  
Melissa M Rogers ◽  
Tracy C Tan ◽  
Amrita Ramkumar ◽  
Ashlyn M Downing ◽  
...  

The microtubule-associated protein, doublecortin-like kinase 1 (DCLK1), is highly expressed in a range of cancers and is a prominent therapeutic target for kinase inhibitors. The physiological roles of DCLK1 kinase activity and how it is regulated remain elusive. Here, we analyze the role of mammalian DCLK1 kinase activity in regulating microtubule binding. We find that DCLK1 autophosphorylates a residue within its C-terminal tail to restrict its kinase activity and prevent aberrant hyperphosphorylation within its microtubule-binding domain. Removal of the C-terminal tail or mutation of this residue causes an increase in phosphorylation within the doublecortin domains, which abolishes microtubule binding. Therefore, autophosphorylation at specific sites within DCLK1 have diametric effects on the molecule's association with microtubules. Our results suggest a mechanism by which DCLK1 modulates its kinase activity to tune its microtubule-binding affinity. These results provide molecular insights for future therapeutic efforts related to DCLK1's role in cancer development and progression.


2002 ◽  
Vol 115 (7) ◽  
pp. 1523-1539 ◽  
Author(s):  
Dave Bélanger ◽  
Carole Abi Farah ◽  
Minh Dang Nguyen ◽  
Michel Lauzon ◽  
Sylvie Cornibert ◽  
...  

The expression of microtubule-associated protein 2 (MAP2), developmentally regulated by alternative splicing, coincides with neurite outgrowth. MAP2 proteins contain a microtubule-binding domain (C-terminal) that promotes microtubule assembly and a poorly characterized domain, the projection domain(N-terminal), extending at the surface of microtubules. MAP2b differs from MAP2c by an additional sequence of 1372 amino acids in the projection domain. In this study, we examined the role of the projection domain in the protrusion of microtubules from the cell surface and the subsequent process formation in Sf9 cells. In this system, MAP2b has a lower capacity to induce process formation than MAP2c. To investigate the role of the projection domain in this event, we expressed truncated forms of MAP2b and MAP2c that have partial or complete deletion of their projection domain in Sf9 cells. Our results indicate that process formation is induced by the microtubule-binding domain of these MAP2 proteins and is regulated by their projection domain. Furthermore, the microtubule-binding activity of MAP2b and MAP2c truncated forms as well as the structural properties of the microtubule bundles induced by them do not seem to be the only determinants that control the protrusion of microtubules from the cell surface in Sf9 cells. Rather, our data suggest that microtubule protrusion and process formation are regulated by intramolecular interactions between the projection domain and its microtubule-binding domain in MAP2b.


Sign in / Sign up

Export Citation Format

Share Document