scholarly journals Increased ERBB2 Gene Copy Numbers Reveal a Subset of Salivary Duct Carcinomas with High Densities of Tumor Infiltrating Lymphocytes and PD-L1 Expression

2020 ◽  
Vol 14 (4) ◽  
pp. 951-965
Author(s):  
Kyriakos Chatzopoulos ◽  
Andrea R. Collins ◽  
Sotiris Sotiriou ◽  
Michael G. Keeney ◽  
Daniel W. Visscher ◽  
...  
2013 ◽  
Vol 59 (7) ◽  
pp. 456-464 ◽  
Author(s):  
Jie Hou ◽  
Xiuyun Cao ◽  
Chunlei Song ◽  
Yiyong Zhou

The coupled nitrification–denitrification process plays a pivotal role in cycling and removal of nitrogen in aquatic ecosystems. In the present study, the communities of ammonia oxidizers and denitrifiers in the sediments of 2 basins (Guozhenghu Basin and Tuanhu Basin) of a large urban eutrophic lake (Lake Donghu) were determined using the ammonia monooxygenase subunit A (amoA) gene and the nitrite reductase gene. At all sites of this study, the archaeal amoA gene predominated over the bacterial amoA gene, whereas the functional gene for denitrification nirK gene far outnumbered the nirS gene. Spatially, compared with the Tuanhu Basin, the Guozhenghu Basin showed a significantly greater abundance of the archaeal amoA gene but less abundance of the nirK and nirS genes, while there was no significant difference of bacterial amoA gene copy numbers between the 2 basins. Unlike the archaeal amoA gene, the nirK gene showed a significant difference in community structure between the 2 basins. Archaeal amoA diversity was limited to the water–sediment cluster of Crenarchaeota, in sharp contrast with nirK for which 22 distinct operational taxonomic units were found. Accumulation of organic substances were found to be positively related to nirK and nirS gene copy numbers but negatively related to archaeal amoA gene copy numbers, whereas the abundance of the bacterial amoA gene was related to ammonia concentration.


2020 ◽  
Author(s):  
Michail Rovatsos ◽  
Lukáš Kratochvíl

AbstractOrganisms evolved various mechanisms to cope with the differences in the gene copy numbers between sexes caused by degeneration of Y and W sex chromosomes. Complete dosage compensation or at least expression balance between sexes was reported predominantly in XX/XY, but rarely in ZZ/ZW systems. However, this often-reported pattern is based on comparisons of lineages where sex chromosomes evolved from non-homologous genomic regions, potentially differing in sensitivity to differences in gene copy numbers. Here we document that two reptilian lineages (XX/XY iguanas and ZZ/ZW softshell turtles), which independently co-opted the same ancestral genomic region for the function of sex chromosomes, evolved different gene dose regulatory mechanisms. The independent co-option of the same genomic region for the role of sex chromosome as in the iguanas and the softshell turtles offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and for gene identity. We showed that the parallel loss of functional genes from the Y chromosome of the green anole and the W chromosome of the Florida softshell turtle led to different dosage compensation mechanisms. Our approach controlling for genetic background thus does not support that the variability in the regulation of the gene dose differences is a consequence of ancestral autosomal gene content.


2018 ◽  
Author(s):  
Luisa Berná ◽  
Matías Rodríguez ◽  
María Laura Chiribao ◽  
Adriana Parodi-Talice ◽  
Sebastián Pita ◽  
...  

Although the genome ofTrypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degree of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated withT. cruzi´sgenome since they permit directly determining the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, allows not only accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of twoT. cruziclones: the hybrid TCC (DTU TcVI) and the non-hybrid Dm28c (DTU TcI), determined by PacBio SMRT technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome ofT. cruziis composed of a "core compartment" and a "disruptive compartment" which exhibit opposite gene and GC content composition. New tandem and disperse repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families MUC and trans-sialidases allows now a better overview of these complex groups of genes.


2018 ◽  
Vol 115 (23) ◽  
pp. 6022-6027 ◽  
Author(s):  
Tiantian Yu ◽  
Weichao Wu ◽  
Wenyue Liang ◽  
Mark Alexander Lever ◽  
Kai-Uwe Hinrichs ◽  
...  

Members of the archaeal phylumBathyarchaeotaare among the most abundant microorganisms on Earth. Although versatile metabolic capabilities such as acetogenesis, methanogenesis, and fermentation have been suggested for bathyarchaeotal members, no direct confirmation of these metabolic functions has been achieved through growth ofBathyarchaeotain the laboratory. Here we demonstrate, on the basis of gene-copy numbers and probing of archaeal lipids, the growth ofBathyarchaeotasubgroup Bathy-8 in enrichments of estuarine sediments with the biopolymer lignin. Other organic substrates (casein, oleic acid, cellulose, and phenol) did not significantly stimulate growth ofBathyarchaeota. Meanwhile, putative bathyarchaeotal tetraether lipids incorporated13C from13C-bicarbonate only when added in concert with lignin. Our results are consistent with organoautotrophic growth of a bathyarchaeotal group with lignin as an energy source and bicarbonate as a carbon source and shed light into the cycling of one of Earth’s most abundant biopolymers in anoxic marine sediment.


2014 ◽  
Vol 98 (12) ◽  
pp. 1733-1737 ◽  
Author(s):  
Shengping Hou ◽  
Jian Qi ◽  
Dan Liao ◽  
Jing Fang ◽  
Lu Chen ◽  
...  

2007 ◽  
Vol 44 (1-3) ◽  
pp. 261
Author(s):  
Yan Yang ◽  
Lee A. Hebert ◽  
Erwin K. Chung ◽  
Haikady N. Nagaraja ◽  
Yee Ling Wu ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Konasale M. Prasad ◽  
Kodavali V. Chowdari ◽  
Leonardo A. D’Aiuto ◽  
Satish Iyengar ◽  
Jeffrey A. Stanley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document