Two CML patients who subsequently developed features of essential thrombocythemia with JAK2-V617F mutation while in complete cytogenetic remission after treatment with imatinib mesylate

2013 ◽  
Vol 97 (6) ◽  
pp. 804-807 ◽  
Author(s):  
Yoo Jin Lee ◽  
Joon Ho Moon ◽  
Ho Cheol Shin ◽  
Jong Won Seo ◽  
Seo Ae Han ◽  
...  
2018 ◽  
Vol 47 (1) ◽  
pp. 155-156 ◽  
Author(s):  
Roberto Castelli ◽  
Paolo Gallipoli ◽  
Riccardo Schiavon ◽  
Thomas Teatini ◽  
Giorgio Lambertenghi Deliliers ◽  
...  

2019 ◽  
Vol 44 (4) ◽  
pp. 492-498
Author(s):  
Gonca Gulbay ◽  
Elif Yesilada ◽  
Mehmet Ali Erkurt ◽  
Harika Gozukara Bag ◽  
Irfan Kuku ◽  
...  

AbstractObjectiveDetection ofJAK2V617F in myeloproliferative neoplasms (MPNs) is very important in both diagnosis and disease progression. In our study, we investigated the frequency ofJAK2V617F mutation in patients with myeloproliferative disorders.MethodsWe retrospectively reviewed the records of 720 patients (174 females and 546 males) who were tested for JAK2 V617F mutation from January 2007 to December 2017.ResultsIn our patients were determined 22.6%JAK2V617F mutation. 33.3% in women, 19.2% in men have been positive forJAK2V617F mutation. In our studyJAK2V617F present in 48.6% of essential thrombocythemia, 80.5% of polycythemia rubra vera (PV), 47.5% of primary myelofibrosis, 10% of MPNs, unclassifiable, 0.8% of others. We also investigated the difference in hematological parameters [white blood cell, hemoglobin (Hb), hematocrit (HCT), red blood cell distribution widths (RDW) and platelets count (PLT)] betweenJAK2V617F positive andJAK2V617F negative patients.ConclusionsInvestigation of the JAK2 V617F mutation is very important in cases of MPNs. In our study JAK2 V617F mutation was higher in PV, essential thrombocythemia, and primary myelofibrosis patients. However, there were significant differences in Hb, HCT, RDW and PLT levels in mutation-positive patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5228-5228
Author(s):  
Kohtaro Toyama ◽  
Norifumi Tsukamoto ◽  
Akio Saito ◽  
Hirotaka Nakahashi ◽  
Yoko Hashimoto ◽  
...  

Abstract Background The gain-of-function point mutation in Janus kinase 2 exon 14 gene (JAK2-V617F) influences the diagnosis of bcr/abl-negative chronic myeloproliferative disorders (CMPDs). We previously reported that analyzing platelets is advantageous in detecting the JAK2-V617F mutation, particularly in essential thrombocythemia (ET), when compared to granulocytes. However, there have been few reports analyzing the JAK2-V617F mutation in erythroid lineage cells, and comparing the mutation status in all three lineages. Method Study protocols were approved by the Institutional Review Board of Gunma University Hospital, and written informed consent was obtained from all the patients. Heparinized peripheral blood was obtained from 113 patients with CMPDs (82 with ET, 25 with polycythemia vera (PV), and 6 with primary myelofibrosis (PMF). After centrifugation, platelets were collected from the upper plasma layer. Remaining blood was mixed with Hank’s Balanced Salt Solution and was subjected to Ficoll-Hypaque density gradient centrifugation. Granulocytes were obtained from the pellet. Mononuclear cells were resuspended in RPMI 1640 medium; 5 × 105 cells were plated in duplicate in 1 ml of methylcellulose medium and cultured in a humidified atmosphere of 5 % of carbon dioxide at 37°C for 14 days in the presence of erythropoietin to obtain erythroid colonies (BFU-E). T-cells were obtained from the remaining mononuclear cells using anti-CD3 immunoconjugated magnetic beads. After extraction of DNA from granulocytes, T-cells and BFU-E, and RNA extraction from granulocytes and platelets, PCR amplification and sequencing of exon 14 of the Jak2 gene was performed to confirm the presence of JAK2-V617F mutations. To confirm the mutation status of granulocytes, T-cells and BFU-E, allele-specific PCR (AS-PCR) was performed. Results For ET, 57 out of 82 patients (69.5%) had the JAK2-V617F mutation. In the 57 patients with the JAK2-V617F mutation, 38 (67%) had the mutation in all three lineages, 5 had the mutation in granulocytes and platelets, 2 had the mutation in platelets and BFU-E, 10 patients had the mutation only in platelets and 2 patients had the mutation only in BFU-E. In contrast, for PV, 22/25 patients (88%) had the JAK2-V617F mutation. Of note, in 22 patients having JAK2-V617F mutation, 20 (91%) were JAK2-V617F mutation-positive in all three lineages; the remaining two patients had the mutation in either platelets or BFU-E. The frequency of JAK2-V617F in all three lineages was significantly higher in PV than in ET (p < 0.05). For PMF, 5 of 6 patients had the mutation in granulocytes, and 3 of these had it in all three lineages. Conclusion Among JAK2-V617F mutation-positive CMPDs, most PV patients had the JAK2-V617F mutation in all three lineages, thus suggesting that the JAK2-V617F mutation occurs in progenitor cell(s) common to granulocytes, platelets and erythrocytes. In contrast, only 67% of ET patients had the JAK2-V617F mutation in three lineages; in the remaining cases, not all of the three lineages have the mutation. This difference in lineages showing the JAK2-V617F mutation between the ET and PV may be related to the pathophysiological differences in ET and PV. Furthermore, the heterogeneous mutation status in ET may be related to its heterogeneous clinical manifestation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4687-4687
Author(s):  
Yue Xu ◽  
Changxin Yin ◽  
Han He ◽  
Lingling Shu ◽  
Fuqun Wu ◽  
...  

Abstract Abstract 4687 JAK2 mutation is commonly found in Philadelphia-negative myeloproliferative neoplasms (MPNs). In Western countries, this mutation is found in approximately 96 percent of people with polycythemia vera, half of individuals with essential thrombocythemia or primary myelofibrosis. We used the method of amplification refractory mutation PCR (ARMS-PCR) to investigate MPN patients in China. We focused our study on patients with essential thrombocythemia (ET). ARMS-PCR was used to detect JAK2 V617F mutation in the bone barrow (BM) or peripheral blood of 37 MPN patients, which consisting of 7 ET, 5 polycythemia vera (PV), 5 chronic myeloid leukemia (CML), 5 chronic idiopathic myelofibrosis (CIMF), as well as 15 suspected MPNs. 17 cases of JAK2 V617F mutation (45.9%) were found in 37 patients, including 4 ET (57.1%), 4 PV (80.0%), 3 CIMF (60.0%), 6 suspected MPNs (40.0%). We did not find JAK2 V617F in the patients with CML. Our results indicated that the frequency of JAK2 V617F mutation in bcr/abl-negative MPNs in Chinese is similar to that in MPN patients in Western countries. At the same time, ARMS-PCR can distinguish the mutation is heterozygous or homozygous. Most patients were heterozygous for JAK2 but only a few were homozygous. In conclusion, our study showed that JAK2 V617F mutation frequency in Chinese MPN patients is similar to that in patients with this disorder in the West. It is the major molecular genetic abnormality in bcr-abl negative MPN and it can be used for diagnosis of MPN in China. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2808-2808
Author(s):  
Damien Luque Paz ◽  
Aurelie Chauveau ◽  
Caroline Buors ◽  
Jean-Christophe Ianotto ◽  
Francoise Boyer ◽  
...  

Abstract Introduction Myeloproliferative neoplasms (MPN) are molecularly characterized by driver mutations of JAK2, MPL or CALR. Other somatic mutations may occur in epigenetic modifiers or oncogenes. Some of them have been shown to confer a poor prognosis in primary myelofibrosis, but their impact is less known in Polycythemia Vera (PV) and Essential Thrombocythemia (ET). In this study, we investigated the mutational profile using NGS technology in 50 JAK2 V617F positive cases of MPN (27 PV and 23 ET) collected at the time of diagnosis and after a 3 year follow-up (3y). Patients and Methods All patients were JAK2 V617F positive and already included in the prospective cohort JAKSUIVI. All exons of JAK2, MPL, LNK, CBL, NRAS, NF1, TET2, ASXL1, IDH1 and 2, DNMT3A, SUZ12, EZH2, SF3B1, SRSF2, TP53, IKZF1 and SETBP1 were covered by an AmpliseqTM custom design and sequenced on a PGM instrument (Life Technologies). CALR exon 9 mutations were screened using fragment analysis. Hotspots that mutated recurrently in MPN with no sequencing NGS coverage were screened by Sanger sequencing and HRM. A somatic validation was performed for some mutations using DNA derived from the nails. The increase of a mutation between diagnosis and follow-up has been defined as a relative increase of twenty percent of the allele burden. An aggravation of the disease at 3y was defined by the presence of at least one of the following criteria: leukocytosis >12G/L or immature granulocytes >2% or erythroblasts >1%; anemia or thrombocytopenia not related to treatment toxicity; development or progressive splenomegaly; thrombocytosis on cytoreductive therapy; inadequate control of the patient's condition using the treatment (defined by at least one treatment change for reasons other than an adverse event). Results As expected, the JAK2 V617F mutation was found in all patients with the use of NGS. In addition, we found 27 other mutations in 10 genes out of the 18 genes studied by NGS (mean 0.54 mutations per patient). Overall, 29 of 50 patients had only the JAK2 V617F mutation and no other mutation in any of the genes analysed. No CALR mutation was detected. Nine mutations that were not previously described in myeloid malignancies were found. The genes involved in the epigenetic regulation were those most frequently mutated: TET2, ASXL1, IDH1, IDH2 and DNMT3A. In particular, TET2 mutations were the most frequent and occurred in 20% of cases. There was no difference in the number or in the presence of mutations between PV and ET. At 3y, 4 mutations appeared in 4 patients and 15 out of 50 patients (9 PV and 6 ET) were affected by an allele burden increase of at least one mutation. At 3y, 24/50 patients suffered an aggravation of the disease as defined by the primary outcome criterion (16 PV and 8 ET). The presence of a mutation (JAK2 V617Fomitted) at the time of the diagnosis was significantly associated with the aggravation of the disease (p=0.025). Retaining only mutations with an allele burden greater than 20%, the association with disease aggravation is more significant (p=0.011). Moreover, a mutation of ASXL1, IDH1/2 or SRSF2, which is a poor prognostic factor in primary myelofibrosis, was found in 8 patients, all having presented an aggravation of their disease (p=0.001). Only 4 patients had more than one somatic mutation other than JAK2 V617F and all of them also had an aggravation at 3y (p=0.046). In this cohort, appearance of a mutation at 3y was not associated with the course of the disease. Conversely, the increase of allele burden of at least one mutation was associated with an aggravation (p=0.019). Discussion and conclusion Despite the short follow-up and the limited number of patients, this study suggests that the presence of additional mutations at the time of the diagnosis in PV and TE is correlated to a poorer disease evolution. The increase of mutation allele burden, which reflects clonal evolution, also seems to be associated with the course of the disease. These results argue for a clinical interest in large mutation screening by NGS at the time of the diagnosis and during follow-up in ET and PV. Disclosures Ugo: Novartis: Membership on an entity's Board of Directors or advisory committees, Other: ASH travel.


2015 ◽  
pp. 2687
Author(s):  
Alessandro M Vannucchi ◽  
Nicola Cascavilla ◽  
Valerio De Stefano ◽  
Alessandro Pancrazzi ◽  
Alessandra Iurlo ◽  
...  

Leukemia ◽  
2005 ◽  
Vol 19 (10) ◽  
pp. 1847-1849 ◽  
Author(s):  
E Antonioli ◽  
P Guglielmelli ◽  
A Pancrazzi ◽  
C Bogani ◽  
M Verrucci ◽  
...  

2008 ◽  
Vol 32 (8) ◽  
pp. 1323-1324 ◽  
Author(s):  
Hui-Hua Hsiao ◽  
Wen-Chi Yang ◽  
Yi-Chang Liu ◽  
Ching-Ping Lee ◽  
Sheng-Fung Lin

2008 ◽  
Vol 51 (6) ◽  
pp. 802-805 ◽  
Author(s):  
Takuya Nakatani ◽  
Toshihiko Imamura ◽  
Hiroyuki Ishida ◽  
Katsuji Wakaizumi ◽  
Tohru Yamamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document