Size Effect in Shear Failure of High Strength Concrete Beams without Stirrup reinforced with Basalt FRP Bars

2019 ◽  
Vol 23 (4) ◽  
pp. 1636-1650 ◽  
Author(s):  
Ghazi Bahroz Jumaa ◽  
Ali Ramadhan Yousif
2018 ◽  
Vol 161 ◽  
pp. 587-597 ◽  
Author(s):  
Haitang Zhu ◽  
Shengzhao Cheng ◽  
Danying Gao ◽  
Sheikh M. Neaz ◽  
Chuanchuan Li

2008 ◽  
Vol 400-402 ◽  
pp. 857-863
Author(s):  
Wei Jian Yi ◽  
Yan Mei Lv

19 RC beams with shear span-to-depth equal to 3 were tested under a stiff testing facility, and complete load-deflection curves including the post-peak branch were obtained. Based on the test results the effects of concrete strength, stirrups strength, inclined stirrup angle, the amount of longitudinal reinforcement on failure mode, shear ductility index and shear capacity were analyzed. The test results were compared with the shear design approaches of Chinese Code and American Code. The results indicate that the shear failure of beam with appropriate web reinforcement has finite ductility. High-strength concrete beams with high-strength stirrups can increase not only the shear capacity, but also the shear ductility. The shear capacity of beams with high-strength concrete and stirrup can be designed with Chinese Code, but shear capacity of high-strength concrete beams without stirrups, or with the smaller amount of longitudinal reinforcement, and normal strength concrete beams with high-strength stirrups may be over-estimated by the Code.


Sign in / Sign up

Export Citation Format

Share Document