An optimal design for axial-flow fan blade: theoretical and experimental studies

2012 ◽  
Vol 26 (2) ◽  
pp. 427-436 ◽  
Author(s):  
Cheng-Hung Huang ◽  
Chung-Wei Gau
2008 ◽  
Author(s):  
Abdus Samad ◽  
Ki-Sang Lee ◽  
Kwang-Yong Kim

This work presents a numerical optimization procedure for a low-speed axial flow fan blade with weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with SST turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The blade profile as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. Six design variables related to blade lean and blade profile are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. PBA model is employed as a surrogate model for optimization. A search algorithm is used to find the optimal design in the design space from the constructed surrogate model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure.


1970 ◽  
Vol 92 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Ramani Mani

An analysis is presented which treats the noise generation from an axial flow fan row by given forces including the effects of a moving medium. The linearization of Euler’s equations to yield tractable problems for fan noise is discussed. The three-dimensional problem is decomposed into several two-dimensional problems. Finally, full details are given of a two-dimensional analysis to predict the amounts of acoustic energy, at the blade passing frequency and its harmonics, radiated up and downstream of a blade row due to its interaction with a neighboring row.


Author(s):  
S D Hill ◽  
R L Elder ◽  
A B McKenzie

This paper deals with an experimental investigation into the influence of a vaned recess casing treatment on the performance of an industrial-type axial-flow fan with a hub-tip ratio of 0.4. The treatment has been tested in a variety of configurations relative to the fan, with an emphasis on the amount of fan blade tip exposure to the treatment. Two sets of blading, one of which is of the fully reversible type, have been investigated. Detailed flow measurements have been carried out with a slanted hot wire probe to provide an insight into the operation of the device and into the nature of the rotating stall in the solid casing configuration. Strain gauges have been employed to enable blade stresses to be recorded and an in-duct microphone to enable comparative tests on fan noise has also been used.


2019 ◽  
pp. 32-43
Author(s):  
Venkata sushma chinta ◽  
P. Ravinder Reddy ◽  
Koorapati Eshwara Prasad ◽  
Krishna Sai Vadapally ◽  
Sathola Anand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document