axial flow fan
Recently Published Documents


TOTAL DOCUMENTS

419
(FIVE YEARS 52)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
pp. 1-19
Author(s):  
Massimo Masi ◽  
Piero Danieli ◽  
Andrea Lazzaretto

Abstract The paper deals with the aerodynamic performance of ducted axial-flow fans available in the 2020 market and aims to create a general picture of the best designs and design trends, as a tool for fan designers. To this end, the paper first presents the general formulation of the similarity approach to the fan performance analysis, including the effects of rotational speed (which affects the validity of the Reynolds similarity) and turbomachine size (which can hinder the perfect geometrical similarity of some shape details). The second part reports a statistical survey of the axial-flow fan performance based on data from catalogues of major manufacturers, and compares the resulting Cordier-lines with optimum fan designs from empirical or CFD-based models available in the literature. In addition to the global performance at maximum aeraulic and total-to-static efficiencies, this survey uses the form of dimensionless Balje-Cordier charts to identify the trends and values of other design parameters, such as hub-to-tip ratio, blade count, and blade positioning angle. As a result, a summary of the aerodynamic performance of year 2020 best designs, the improvements achieved during the last forty years, and the present design trends in contra-rotating, vane-axial, and tube-axial fan types are made available to fan designers.


2021 ◽  
Vol 71 (5) ◽  
pp. 581-587
Author(s):  
Rajat Arora ◽  
Ramraj H Sundararaj ◽  
Abhijit Kushari

A single-stage axial fan having a pressure ratio of 1.01 is designed in the current study. The design pressure ratio is chosen based on the power available from the existing motor (2.2 kW). The design space for the axial flow fan was generated by varying specific flow and geometrical parameters in suitable steps, using a program written in MATLAB. The varied flow parameters are mass flow rate, inlet Mach number, inlet flow angle, and rotor speed. The geometrical parameters that were varied are hub to tip ratio, aspect ratio, and blade solidity. Using these as the input variables and applying free vortex theory for 3-dimensional blade design, the aerodynamic design of the axial flow fan was carried out. Performance parameters like flow coefficient, stage loading coefficient, degree of reaction, diffusion factor, De Haller’s number, and blade angles were calculated at the blade’s hub, mean, and tip. Total design space of 92160 data points was obtained from the combination of input parameters. Several constraints were applied to optimise the design space based on the available power from the existing motor and in-house manufacturing limitations. The initial design space was reduced to 82 data points using these constraints. To further reduce the number of points in the design space, off-design performance was evaluated for each of these data points. Following this, one design point was selected based on the optimum performance range in off-design operation, while considering manufacturing limitations. Using Mellor charts, a suitable blade profile was chosen based on the inlet and exit blade angles. NACA 65-410 airfoil was selected with a stagger of 55 degrees and an incidence of 6 degrees for optimum performance.


Author(s):  
Rajat Arora ◽  
Ramraj H. Sundararaj ◽  
T. Chandrasekar ◽  
Sharad Saxena ◽  
Abhijit Kushari

2021 ◽  
Author(s):  
Johan Van Der Spuy ◽  
Theodor Von Backstrom ◽  
Johannes Rohwer ◽  
Francois Louw

2021 ◽  
Author(s):  
Hanqing Yang ◽  
Yijun Wang ◽  
Jinju Sun ◽  
Bangyi Wang ◽  
Youwei He ◽  
...  

Abstract Rim-driven hub-less fans have newly emerged as the most compact type of axial flow fans, which permits flexible configuration arrangements, large relative flow area and low-noise level operation. However, previous publications on rim-driven axial flow fans are rarely found in the open literature, and the flow mechanism and design principle of such promising fans haven’t yet been well-understood and established. This paper has been focused on a preliminary study of the rim-driven axial flow fan design and flow mechanism. A design method of the rim-driven fans is proposed on the basis of the isolated airfoil scheme and the variable circulation rule. It is further incorporated into a FORTRAN code and suited for designing the rim-driven hub-less fans of low-pressure levels. For validation purpose, a conventional hub-type fan is redesigned with the developed method and its flow behavior and overall performance are investigated numerically. A parametric study on the designed fan is further conducted respectively for the tangential velocity difference at mean span, circulation exponent and sweep angle and their influence on the fan flow characteristics and overall performance are explored and highlighted. On such a basis, the developed design method for the rim-driven axial flow fan is further improved. In comparison with the conventionally designed fan at identical rotating speed, significant comprehensive gains are arising from the redesigned fan of hub-less configuration: the overall pressure rise and static pressure efficiency is enhanced respectively by 6.2% and 11.5%, whereas the diameter of the fan is reduced by 12.5% simultaneously. It is demonstrated that the rim-driven hub-less configuration is promising for the enhancing the fan overall performance with even reduced dimensions.


Sign in / Sign up

Export Citation Format

Share Document