CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators

2012 ◽  
Vol 26 (9) ◽  
pp. 2949-2958 ◽  
Author(s):  
Seong Won Hwang ◽  
Dong Hwan Kim ◽  
June Kee Min ◽  
Ji Hwan Jeong
2002 ◽  
Vol 16 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Dong-Seong Park ◽  
Min-Ho Chung ◽  
Sang-Yun Lee

2021 ◽  
Vol 39 (5) ◽  
pp. 1523-1531
Author(s):  
Katherine Barquín ◽  
Alvaro Valencia

Over the last decades several studies have searched for improved Fin and Tube Heat Exchanger (FTHE) designs capable of providing the best thermo-hydraulic performance. The present study aims at quantifying and comparing the thermo-hydraulic performance of different FTHE configurations. Six different designs were analyzed. The first FTHE consisted of an in-line circular tube arrangement and the last one was a FTHE with staggered oval tube with two pairs of Delta Winglet Vortex Generators (DWVG) in common flow up–common flow down (CFU-CFD) configuration. The best performance was obtained using DWVG in CFU-CFD orientation. This configuration enabled a 90% increase of the thermal performance factor when compared with the first case, using only two pairs of vortex generator´s per tube.


2019 ◽  
Vol 130 ◽  
pp. 01027
Author(s):  
Stefan Mardikus ◽  
Petrus Setyo Prabowo ◽  
Vinsensius Tiara Putra ◽  
Made Wicaksana Ekaputra ◽  
Juris Burlakovs

Vortex generator is a method to enhancing of heat exchanger performance but still have some disadvantages when the heat transfer performance increase. One of the disadvantage using vortex generator is high pressure drop. This investigation will be compared three type vortex generators to result the overall performance of heat transfer around tube in plate fin heat exchanger. The three types of vortex generator to investigate are rectangular winglet type, delta winglet type, and trapezoidal winglet type in laminar flow. The result showed that using the kind of trapezoidal winglet pair type in the plate fin and tube heat exchanger consist of six rows of round tube with two neighboring fins form a channel better performance than two types vortex generators such as rectangular winglet type and delta winglet type. The heat transfer coefficient when use trapezoidal winglet type was increased almost same with rectangular winglet type and pressure drop was decreased more than delta winglet type.


2019 ◽  
Vol 5 (3) ◽  
pp. 10
Author(s):  
Mahtab Alam ◽  
Dr. Dharmendra Singh Rajput

The main objective of the present work is to investigation of optimum design of plate fin tube heat exchanger using Computational fluid dynamic approach and maximizing thermal performance. There are total five designs of plate fin and tube heat exchanger are used in present work and CFD analysis have been performed in it to get maximum heat transfer. It has been observed from CFD analysis that the maximum heat transfer can be achieved from plate fin and tube heat exchanger with elliptical tube arrangement inclined at 30o with 23.22% more heat transfer capacity as compared to circular tube plate pin heat exchanger. So that it is recommended that if the plate fins and tube heat exchanger with inclined elliptical tube used in place of circular tube arrangement, batter heat transfer can be achieved.


Sign in / Sign up

Export Citation Format

Share Document