Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum

2014 ◽  
Vol 28 (6) ◽  
pp. 2033-2040 ◽  
Author(s):  
Caichao Zhu ◽  
Shuang Chen ◽  
Huaiju Liu ◽  
Huaqing Huang ◽  
Guangfu Li ◽  
...  
2015 ◽  
Vol 29 (5) ◽  
pp. 1913-1919 ◽  
Author(s):  
Caichao Zhu ◽  
Shuang Chen ◽  
Chaosheng Song ◽  
Huaiju Liu ◽  
Houyi Bai ◽  
...  

Author(s):  
P Srikanth ◽  
AS Sekhar

The dynamic analysis of wind turbine drive train is presented in this paper. A typical wind turbine drive train consists of a rotor, gearbox and generator. The dynamic modelling of epicyclic gearbox that exists in wind turbine is challenging due to the fact that it has both rotating and orbiting gears. The dynamic equations of motion are obtained based on the rigid multibody modelling with discrete flexibility approach by Lagrange’s formulation. The dynamic model accounts for the time varying gear tooth mesh stiffness, linear stiffness of bearings and torsional shaft stiffness. The aerodynamic torque that a wind turbine drive train subjected to, is modelled based on the simplified method for load calculation in wind turbine, Danish Standard DS472. The characteristic load value acting per unit length at the two-thirds length of the blade is used for calculating the total load of the torsional moment. The vibration signals that are obtained from wind turbine drive train are nonlinear and nonstationary in nature. This is due to the fact that the applied torque load on drive train is nonlinear and nonstationary in nature. The coupled dynamic model of 18 degrees of freedom is solved for responses in time and frequency domains for some nonstationary wind load realizations. The dynamic responses of the system, contact forces between gear tooth pairs in time and frequency domains are obtained numerically. The study envisages that this dynamic model of wind turbine drive train is very useful for subsequent studies on condition monitoring.


Author(s):  
Aldemir Ap Cavalini Jr ◽  
João Marcelo Vedovoto ◽  
Renata Rocha

Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Hiroshi Ookubo ◽  
Iku Sato ◽  
Shigesuke Ishida

This paper is concerned with the development of a Floating Offshore Wind Turbine (FOWT) utilizing spar-type floating foundation. In order to design such a structure, it is essential to evaluate the dynamic response under extreme environmental conditions. In this study, therefore, a dynamic analysis tool has been developed. The dynamic analysis tool consists of a multi-body dynamics solver (MSC.Adams), aerodynamic force evaluation library (NREL/AeroDyn), hydrodynamic force evaluation library (In-house program named SparDyn), and mooring force evaluation library (In-house program named Moorsys). In this paper, some details of the developed dynamic analysis tool are given. In order to validate the program, comparison with the experimental results, where the wind, current and wave are applied simultaneously, has been made. The comparison shows that satisfactory agreements between the simulation and the experimental results are obtained. However, when VIM (Vortex Induced Motion) occurs, the current loads and cross flow responses (sway and roll) are underestimated by the simulation since the simulation code does not account for the effect of VIM.


Wind Energy ◽  
2018 ◽  
Vol 21 (12) ◽  
pp. 1406-1422 ◽  
Author(s):  
Hongkun Zhang ◽  
Rubén Ortiz de Luna ◽  
Martin Pilas ◽  
Jan Wenske

Sign in / Sign up

Export Citation Format

Share Document