Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season

2018 ◽  
Vol 32 (8) ◽  
pp. 3929-3942 ◽  
Author(s):  
Fatih Ünal ◽  
Galip Temir ◽  
Hasan Köten
Solar Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 10-29
Author(s):  
Bo Xiang ◽  
Yasheng Ji ◽  
Yanping Yuan ◽  
Chao Zeng ◽  
Xiaoling Cao ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 24
Author(s):  
Piotr Rynkowski

In this paper, experimental studies were performed for a solar ground source heat pump system (SGSHPS) with a vertical ground heat exchanger (VGHE). The experiment was operated during the summer in 2018. The heat from the solar collector was monitored by measuring the inlet and outlet temperatures and flow rate of the heat transfer fluids. An energy equilibrium balance carried out indicates heat extraction from the solar collector to the ground heat exchanger. It has been established that clear impact is achieved within a radius of 5 m. The average temperature of the actively regenerated borehole was higher than that of the undisturbed profile, which has a direct impact on the significant benefits of the coefficient of performance (COP) of the ground source heat pump system (GSHPS) and effectively helps soil regeneration. The average efficiency ratio of the heat transferred from solar radiation to soil in the SGSHPS was 42.3%.


2012 ◽  
Vol 608-609 ◽  
pp. 974-978
Author(s):  
Xian Fang Hu ◽  
Yu Yun Li ◽  
Yong Ma ◽  
Gui Hua Hu ◽  
Qian Tang

Based on the heating season testing of ground-source heat pump system (GSHP) in Wuhan, the article discussed the energy efficiency ratio of ground-source heat pump system under the heating conditions. By comparison with conventional chillers & coal-fired boiler system, the system energy savings, environmental benefits and incremental payback period are analysized. There comes to the conclusion that the energy saving rate of the heating season is about 19.74% higher than that of the cooling season, reducing 18.35 kg carbon dioxide emissions, 0.15kg of sulfur dioxide and 0.0743 kg of dust per unit construction area each year. Also this article concludes the annual energy saving rate of ground-source heat pump system equals to that of water-source heat pump, with the payback period 22% longer and the cost-effective ratio 32% higher.


Sign in / Sign up

Export Citation Format

Share Document