Thermal management analysis of serial-connection three-chamber piezoelectric pump

Author(s):  
Lipeng He ◽  
Xiaoqiang Wu ◽  
Zheng Zhang ◽  
Jingran Wang ◽  
Dianbin Hu ◽  
...  
2014 ◽  
Vol 915-916 ◽  
pp. 366-371
Author(s):  
Bing Han ◽  
Zhong Hua Zhang ◽  
Shu Yun Wang ◽  
Jun Wu Kan ◽  
Ze Hui Ma ◽  
...  

The structure and working principle of serial-connection 3-chamber PZT pump was introduced, and the output performance of the PZT pump was analyzed under different working modes. The pump was tested, respectively, first with each of the three actuators at different location being actuated solely, and then with random two of the three actuators at different location being actuated (in anti-phase) synchronously. The test results show that changing the driving strategy can change the output performance of the piezoelectric pump, with the structural parameters, working parameters and connection Strategy determined. At a voltage of 150 V, the maximal flowrate and optimal working frequencies for the pump under working mode of left, middle, right chambers actuated solely are 9/7.5/11 ml/min and 260/380/720 Hz respectively. The maximal flowrate and the optimal working frequency for the pump under working mode of left and middle chambers/middle and right chambers actuated synchronously are 17/28 ml/min and 460/600 Hz respectively.


Author(s):  
Ping Zeng ◽  
Li’an Li ◽  
Jingshi Dong ◽  
Guangming Cheng ◽  
Junwu Kan ◽  
...  

A novel piezoelectric pump called single-bimorph double-acting check-valve piezoelectric pump was proposed in this paper in order to improve the output performance of the single-bimorph single-chamber piezoelectric membrane pump. The constituent parts of the newly designed piezoelectric pump have no difference with the single-bimorph single-chamber check-valve piezoelectric membrane pump except the structural difference of the pump body. There are two serial-connection pump chambers which are formed by the two sides of the piezoelectric bimorph and the pump body of the newly designed piezoelectric pump. The new piezoelectric pump was fabricated, and output performance was experimentally investigated. The maximum flow rate against zero back pressure of the new pump was 318 ml/min and the pumping pressure reached 40.5 kPa at the operating voltage of 90 V. The output power was roughly twice that of the single-bimorph single-chamber check-valve piezoelectric membrane pump. The testing results proved that the new piezoelectric pump could enhance the output performance and the energy conversion efficiency of the piezoelectric bimorph comparing with the single-bimorph single-chamber check-valve piezoelectric membrane pump.


Author(s):  
Gerard M. J. van Leeuwen ◽  
Francis-Paul E.M. Janssen ◽  
Wouter D. van Marken-Lichtenbelt ◽  
Bas A.J.M. de Mol ◽  
Anton A. van Steenhoven
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document