Spectral Stability of the $${\overline{\partial }}$$-Neumann Laplacian: The Kohn–Nirenberg Elliptic Regularization

Author(s):  
Siqi Fu ◽  
Chunhui Qiu ◽  
Weixia Zhu
2002 ◽  
Vol 186 (2) ◽  
pp. 485-508 ◽  
Author(s):  
V.I. Burenkov ◽  
E.B. Davies

2022 ◽  
Vol 32 (2) ◽  
Author(s):  
Siqi Fu ◽  
Weixia Zhu

AbstractWe study spectral stability of the $${\bar{\partial }}$$ ∂ ¯ -Neumann Laplacian on a bounded domain in $${\mathbb {C}}^n$$ C n when the underlying domain is perturbed. In particular, we establish upper semi-continuity properties for the variational eigenvalues of the $${\bar{\partial }}$$ ∂ ¯ -Neumann Laplacian on bounded pseudoconvex domains in $${\mathbb {C}}^n$$ C n , lower semi-continuity properties on pseudoconvex domains that satisfy property (P), and quantitative estimates on smooth bounded pseudoconvex domains of finite D’Angelo type in $${\mathbb {C}}^n$$ C n .


2013 ◽  
Vol 264 (9) ◽  
pp. 2097-2135 ◽  
Author(s):  
Antoine Lemenant ◽  
Emmanouil Milakis ◽  
Laura V. Spinolo

2016 ◽  
Vol 289 (17-18) ◽  
pp. 2133-2146 ◽  
Author(s):  
V. I. Burenkov ◽  
V. Gol'dshtein ◽  
A. Ukhlov

2021 ◽  
pp. 3114-3131
Author(s):  
Fanghao Ye ◽  
Qingsong Shan ◽  
Haibo Zeng ◽  
Wallace C. H. Choy

2014 ◽  
Vol 367 (3) ◽  
pp. 2159-2212 ◽  
Author(s):  
Mathew A. Johnson ◽  
Pascal Noble ◽  
L. Miguel Rodrigues ◽  
Kevin Zumbrun

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ran Zhang ◽  
Chuan-Fu Yang

AbstractWe prove that if the Neumann eigenvalues of the impulsive Sturm–Liouville operator {-D^{2}+q} in {L^{2}(0,\pi)} coincide with those of the Neumann Laplacian, then {q=0}.


2008 ◽  
Vol 194 (3) ◽  
pp. 1029-1079 ◽  
Author(s):  
Jeffrey Humpherys ◽  
Gregory Lyng ◽  
Kevin Zumbrun

2021 ◽  
pp. 1-23
Author(s):  
FÁBIO NATALI ◽  
SABRINA AMARAL

Abstract The purpose of this paper is to present an extension of the results in [8]. We establish a more general proof for the moving kernel formula to prove the spectral stability of periodic traveling wave solutions for the regularized Benjamin–Bona–Mahony type equations. As applications of our analysis, we show the spectral instability for the quintic Benjamin–Bona–Mahony equation and the spectral (orbital) stability for the regularized Benjamin–Ono equation.


Sign in / Sign up

Export Citation Format

Share Document