Soil Microbial Communities Reflect both Inherent Soil Properties and Management Practices in Wisconsin Potato Fields

2018 ◽  
Vol 95 (6) ◽  
pp. 696-708 ◽  
Author(s):  
Diane Xue ◽  
Rachel Christenson ◽  
Ruth Genger ◽  
Amanda Gevens ◽  
Richard A. Lankau
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Marais ◽  
M. Hardy ◽  
M. Booyse ◽  
A. Botha

Different plants are known to have different soil microbial communities associated with them. Agricultural management practices such as fertiliser and pesticide addition, crop rotation, and grazing animals can lead to different microbial communities in the associated agricultural soils. Soil dilution plates, most-probable-number (MPN), community level physiological profiling (CLPP), and buried slide technique as well as some measured soil physicochemical parameters were used to determine changes during the growing season in the ecosystem profile in wheat fields subjected to wheat monoculture or wheat in annual rotation with medic/clover pasture. Statistical analyses showed that soil moisture had an over-riding effect on seasonal fluctuations in soil physicochemical and microbial populations. While within season soil microbial activity could be differentiated between wheat fields under rotational and monoculture management, these differences were not significant.


2021 ◽  
Vol 49 (4) ◽  
pp. 12532
Author(s):  
Ali I. MALLANO ◽  
Xianli ZHAO ◽  
Yanling SUN ◽  
Guangpin JIANG ◽  
Huang CHAO

Continuous cropping systems are the leading cause of decreased soil biological environments in terms of unstable microbial population and diversity index. Nonetheless, their responses to consecutive peanut monocropping cycles have not been thoroughly investigated. In this study, the structure and abundance of microbial communities were characterized using pyrosequencing-based approach in peanut monocropping cycles for three consecutive years. The results showed that continuous peanut cultivation led to a substantial decrease in soil microbial abundance and diversity from initial cropping cycle (T1) to later cropping cycle (T3). Peanut rhizosphere soil had Actinobacteria, Protobacteria, and Gemmatimonadetes as the major bacterial phyla. Ascomycota, Basidiomycota were the major fungal phylum, while Crenarchaeota and Euryarchaeota were the most dominant phyla of archaea. Several bacterial, fungal and archaeal taxa were significantly changed in abundance under continuous peanut cultivation. Bacterial orders, Actinomycetales, Rhodospirillales and Sphingomonadales showed decreasing trends from T1>T2>T3. While, pathogenic fungi Phoma was increased and beneficial fungal taxa Glomeraceae decreased under continuous monocropping. Moreover, Archaeal order Nitrososphaerales observed less abundant in first two cycles (T1&T2), however, it increased in third cycle (T3), whereas, Thermoplasmata exhibit decreased trends throughout consecutive monocropping. Taken together, we have shown the taxonomic profiles of peanut rhizosphere communities that were affected by continuous peanut monocropping. The results obtained from this study pave ways towards a better understanding of the peanut rhizosphere soil microbial communities in response to continuous cropping cycles, which could be used as bioindicator to monitor soil quality, plant health and land management practices.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252216
Author(s):  
Laurie Dunn ◽  
Christophe Lang ◽  
Nicolas Marilleau ◽  
Sébastien Terrat ◽  
Luc Biju-Duval ◽  
...  

According to biogeography studies, the abundance and richness of soil microorganisms vary across multiple spatial scales according to soil properties and farming practices. However, soil microorganisms also exhibit poorly understood temporal variations. This study aimed at better understanding how soil microbial communities respond to changes in farming practices at a landscape scale over time. A regular grid of 269 sites was set up across a 1,200 ha farming landscape, and soil samples were characterized for their molecular microbial biomass and bacterial richness at two dates (2011 and 2016). A mapping approach highlighted that spatial microbial patterns were stable over time, while abundance and richness levels were modified. The drivers of these changes were investigated though a PLS-PM (partial least square path-modeling) approach. Soil properties were stable over time, but farming practices changed. Molecular microbial biomass was mainly driven by soil resources, whereas bacterial richness depended on both farming practices and ecological parameters. Previous-crop and management effects and a temporal dependence of the microbial community on the historical farming management were also highlighted.


2019 ◽  
Vol 3 (3) ◽  
pp. 212-223 ◽  
Author(s):  
Yuan Zeng ◽  
Zaid Abdo ◽  
Amy Charkowski ◽  
Jane E. Stewart ◽  
Kenneth Frost

1,3-Dichloropropene (1,3-D) is a well-known nematicidal soil fumigant on many crop species. Currently, little is known about its impact on soil microbial communities using culture-free methods. In this study, we investigated changes in soil bacterial and fungal diversity and composition at two depths (30.5 and 61 cm) in response to management practices of applying 1,3-D at four different rates (103, 122, 140, and 187 liters/ha) relative to an untreated control in potato production fields using 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing. A total of 12,783 operational taxonomic units (OTUs) for 16S and 1,706 OTUs for ITS were obtained. Sequencing revealed that Proteobacteria, Firmicutes, Actinobacteria, and Ascomycota were dominant phyla in soils. Comparing alpha diversity of microbial communities at the different chemical rates with untreated plots showed that bacterial communities in plots treated with 1,3-D fumigation at 140 liters/ha were richer, which was supported by higher richness indices. Other diversity indices and overall soil microbial community structure were not significantly influenced by any rates of 1,3-D fumigation, although higher bacterial and fungal richness and diversity were observed in posttreatment soils and/or at 30.5 cm. Of the identified microbial families, the differential abundance of 45 bacterial and 24 fungal families was affected by sample depth, 1,3-D rate, or the interaction of sample depth and 1,3-D. The bacterial family Enterobacteriaceae, which includes species that specialize in decay of complex carbohydrates, increased in abundance post-1,3-D fumigation, and the fungal family Ophiocordycipitaceae, which includes nematode and insect pathogens, decreased, suggesting that the nematode and soil insect death caused by fumigation may selectively impact specific fungal and bacterial families.


Geoderma ◽  
2012 ◽  
Vol 170 ◽  
pp. 369-377 ◽  
Author(s):  
David Hiltbrunner ◽  
Sebastian Schulze ◽  
Frank Hagedorn ◽  
Michael W.I. Schmidt ◽  
Stephan Zimmmermann

2004 ◽  
Vol 36 (11) ◽  
pp. 1873-1883 ◽  
Author(s):  
Carmine Crecchio ◽  
Antonio Gelsomino ◽  
Roberto Ambrosoli ◽  
José Luis Minati ◽  
Pacifico Ruggiero

Sign in / Sign up

Export Citation Format

Share Document