Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora

2009 ◽  
Vol 14 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Jae-Il Park ◽  
Jinwon Lee ◽  
Sang Jun Sim ◽  
Jae-Hwa Lee
2012 ◽  
Vol 10 (3) ◽  
pp. 97-118
Author(s):  
Krzysztof Biernat ◽  
Izabela Różnicka

Both governmental and international programs support the promotion of biofuels and aim to increase the limit of renewable energy used in the fuel energy balance. Biogas is produced during the anaerobic methane fermentationprocess and it is known as a significant source of renewable energy, contributing to agriculture and environmental protection. Three types of biogas can be distinguished: biogas from sewage sludge, biogas collected from land`fils, andagricultural biogas. There are several possibilities of using upgraded biogas. Biogas can be used in cogeneration systems to provide heat and electricity, in transportation as a motor fuel and in the production of biohydrogen. Biogas upgrading process leads to a product which is characterized by the same parameters as compressed natural gas. Direct biogas use in the production of hydrogen is possible because of prior purification from traces like hydrogen sulfide, except carbon dioxide, by which the reaction can proceed in the desired manner.


2017 ◽  
Author(s):  
Yan Huang ◽  
Bin Sun ◽  
Pei Min He

Macro-algae flora of the mussel culture zones in Gouqi island, Zhejiang Province, was surveyed from 2014 to 2015. Seventy species of macro-algae were identified, belonging to 31 genera, 21 families, 14 orders, and three phyla. Thirty-eight species from 16 genera belong to Rhodophyta, 21 species from seven genera belong to Phaeophyta, and 11 species from eight genera belong to Chlorophyta. Rhodophyta, Chlorophyta, and Phaeophyta contributed to 54.29%, 30%, and 15.71% of the total number of species, respectively. The dominant species were Undaria pinnatifida, Sargassum horneri, Grateloupia livida, Grateloupia turuturu, Ulva pertusa, Ulva lactuca, Hypnea boergesenii, Ulva linza, Cladophora utriculosa, and Amphiroa ephedraea. Seasonal alternation of macro-algae species was evident; there were 52 species in spring, 42 species in winter, 38 species in autumn, and 30 species in summer. Macro-algae biomass was highest in spring and lower in autumn > summer > and winter. The diversity of macro-algae communities also changed seasonally; the diversity index (H’) was highest in autumn and lower in summer > winter > and spring. The results of de-trended correspondence analysis suggested that temperature was the most important environmental factor affecting the distribution of the macro-algae in mussel culture zones. Wind, water currents, and human disturbances were also important factors affecting algal communities.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4217
Author(s):  
German Smetana ◽  
Ewa Neczaj ◽  
Anna Grosser

Sewage sludge (SS) generation and its management still pose a problem in many countries. Anaerobic co-digestion (AcD) of SS with grease trap sludge (GTS) and organic fraction of municipal sewage waste (OFMSW), which are two easily biodegradable substrates, may improve biogas production and AcD kinetics. Algae biomass (AB) of the species Undaria pinnatifida can be the third co-digestion component that may also affect the AcD performance. The aim of the study was therefore to evaluate the performance of mesophilic and thermophilic SS batch AcD with OFMSW, GTS as well as AB through biochemical methane potential (BMP) assay in relation to cumulative specific biogas (YB) and methane yields (Ym). Three kinetic models were applied within the scope of the kinetic study. Results of the study showed that the mixture containing SS, GTS and AB brought the most noticeable improvements in Ym compared to other studied mixtures and in respect to standalone SS digestion, the improvement amounted to 88.37% at mesophilic temperature (260.83 ± 15.02 N mL CH4/g-VSadd and for standalone SS 138.47 ± 4.70 N mL CH4/g-VSadd) and 71.09%, respectively, at the thermophilic one (275.66 ± 4.11 N mL-CH4/g-VSadd and for SS standalone 161.13 ± 13.11 N mL-CH4/g-VSadd).


Author(s):  
Joseph K. Bwapwa ◽  

Municipal wastewater treatment plants generate large amounts of sludge after a set of unit processes. The sewage sludge is an important resource for energy production because of its high level of biodegradability. Sewage sludges are generally made of non-toxic and biodegradable organic compounds mixed with a small fraction of non-toxic and toxic inorganic compounds having a very low biodegradability. The large fraction of biodegradable matter constitutes a pool for green/clean energy to be used for industrial and domestic applications. The generated energy can also be used in the wastewater treatment plant. Currently, fossil fuels are leading the energy world, however, they are being depleted and are considered to be among the main causes contributing to climate change and global warming. Domestic sewage sludge can be converted sustainably into bio-hydrogen and bio- methane. This conversion is achievable through anaerobic digestion, combustion, pyrolysis and gasification. With regard to the last three conversion processes, the organic and inorganic toxic compounds are eliminated. Production of biogas from sewage sludge is being undertaken worldwide on small, medium, and large scales. However, hydrogen production from sludge is still developing. There is an existence of substantial knowledge in this field, the production of hydrogen and biogas from sewage sludge is gaining interest. This study analyses various possibilities of sewage sludge conversion into clean energy. The analysis focuses on the technology strengths, weaknesses and gaps to be improved in future studies.


2017 ◽  
Author(s):  
Yan Huang ◽  
Bin Sun ◽  
Pei Min He

Macro-algae flora of the mussel culture zones in Gouqi island, Zhejiang Province, was surveyed from 2014 to 2015. Seventy species of macro-algae were identified, belonging to 31 genera, 21 families, 14 orders, and three phyla. Thirty-eight species from 16 genera belong to Rhodophyta, 21 species from seven genera belong to Phaeophyta, and 11 species from eight genera belong to Chlorophyta. Rhodophyta, Chlorophyta, and Phaeophyta contributed to 54.29%, 30%, and 15.71% of the total number of species, respectively. The dominant species were Undaria pinnatifida, Sargassum horneri, Grateloupia livida, Grateloupia turuturu, Ulva pertusa, Ulva lactuca, Hypnea boergesenii, Ulva linza, Cladophora utriculosa, and Amphiroa ephedraea. Seasonal alternation of macro-algae species was evident; there were 52 species in spring, 42 species in winter, 38 species in autumn, and 30 species in summer. Macro-algae biomass was highest in spring and lower in autumn > summer > and winter. The diversity of macro-algae communities also changed seasonally; the diversity index (H’) was highest in autumn and lower in summer > winter > and spring. The results of de-trended correspondence analysis suggested that temperature was the most important environmental factor affecting the distribution of the macro-algae in mussel culture zones. Wind, water currents, and human disturbances were also important factors affecting algal communities.


2018 ◽  
Vol 80 (2) ◽  
Author(s):  
Amira Nabila Roslee ◽  
Nur Farizan Munajat

Preliminary pyrolysis studies of macroalgae biomass (Ulva cf. flexuosa and Hy. edulis) which were collected from several coastlines of Peninsular Malaysia were performed by using thermogravimetric analysis (TGA). The corresponding kinetic parameters were calculated through three model-free methods, namely Kissinger, Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO). The TGA curves of both species exhibited three degradation stages: dehydration, devolatilization, and residual decomposition. The devolatilization stage is where the main pyrolysis occurred at a temperature around 150-590oC and released the total volatiles of 56.93% and 54.92% for Ulva cf. flexuosa and Hy. Edulis.  The calculation of activation energy from Kissinger method for Ulva cf. flexuosa was 180.24 kJ/mol while 194.86 kJ/mol for Hy. edulis. The apparent activation energies for KAS and FWO methods are increased by increasing the pyrolysis conversion with average activation energies of 241.17 kJ/mol and 253.65kJ/mol for Ulva cf. flexuosa, while for Hy. edulis, are 244.75 kJ/mol and 258.9 kJ/mol. This study provides the basis for the further application for designing and modeling in thermochemical conversion system of macro algae biomass.


Biorefinery ◽  
2019 ◽  
pp. 727-740
Author(s):  
Rashed H. Farzanah ◽  
Grzegorz Przemyslaw Brudecki ◽  
Iwona Cybulska ◽  
Juan-Rodrigo Bastidas-Oyanedel ◽  
Jens Ejbye Schmidt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document