Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction

Nano Research ◽  
2021 ◽  
Author(s):  
Rongpeng Ma ◽  
Ying Wang ◽  
Guoqiang Li ◽  
Long Yang ◽  
Shiwei Liu ◽  
...  
Author(s):  
wenyuan zhang ◽  
Changmin Lee ◽  
Eric A.C. Bushnell

In the present study, the reactivity of OH with Ni(X2C2H2)2 and Ni(X2C2H2)2- (where X = S or Se) was investigated From the thermodynamics, it found that the OH radical attacks a backbone C-atom of the Ni(S2C2H2)2 complex. For the Ni(Se2C2H2)2 complex, the OH is predicted to target the ligating chalcogen atom. The significance of this is that with the attack of OH to a backbone C-atom, the thermodynamic cost to lose a proton or hydrogen atom ranges from exergonic to marginally endergonic depending on the oxidation state of the complex. Notably, such a process results in a rearrangement of the complex, likely leading to deactivation of the catalyst. Where OH has attacked a ligating chalcogenide atom, the thermodynamic cost to lose a proton or hydrogen is endergonic regardless of oxidation state of the complex. Where OH attacks a coordinating chalcogenide atom, the thermodynamics for the addition of a proton was considered. At the present level of theory, it was found that for the dithiolene and diselenolene monoanionic complexes, the addition of a proton is marginally endergonic. However, following protonation, the loss of water is significantly exergonic and results in the regeneration of the neutral non-oxidized Ni-complex. Given the greater tendency for OH to attack Se versus S it may be speculated that the use of diselenolene ligands may offer a means to protect the Ni-complex from damaging OH radicals due to the thermodynamic tendency for OH to attack Se atom of the diselenolene complexes not seen in the dithiolene complexes.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2020 ◽  
Author(s):  
Elisabeth Hofmeister ◽  
Jisoo Woo ◽  
Tobias Ullrich ◽  
Lydia Petermann ◽  
Kevin Hanus ◽  
...  

Cobaloximes and their BF<sub>2</sub>-bridged analogues have emerged as promising non-noble metal catalysts for the photocatalytic hydrogen evolution reaction (HER). Herein we report the serendipitous discovery that double complex salts such as [Co(dmgh)<sub>2</sub>py<sub>2</sub>]<sup>+</sup>[Co(dmgBPh<sub>2</sub>)<sub>2</sub>Cl<sub>2</sub>]<sup>-</sup> can be obtained in good yields by treatment of commercially available [Co(dmgh)<sub>2</sub>pyCl] with triarylboranes. A systematic study on the use of such double complex salts and their single salts with simple counterions as photocatalysts revealed HER activities comparable or superior to existing cobaloxime catalysts and suggests ample opportunities for this compound class in catalyst/photosensitizer dyads and immobilized architectures. Preliminary electrochemical and spectroscopic studies indicate that one key advantage of these charged cobalt complexes is that the reduction potentials as well as the electrostatic interaction with charged photosensitizers can be tuned.


Author(s):  
Xi Yin ◽  
Ling Lin ◽  
Hoon T. Chung ◽  
Ulises Martinez ◽  
Andrew M. Baker ◽  
...  

Finding a low-cost and stable electrocatalyst for hydrogen evolution reaction (HER) as a replacement for scarce and expensive precious metal catalysts has attracted significant interest from chemical and materials research communities. Here, we demonstrate an organic catalyst based on 2,2’-dipyridylamine (dpa) molecules adsorbed on carbon surface, which shows remarkable hydrogen evolution activity and performance durability in strongly acidic polymer electrolytes without involving any metal. The HER onset potential at dpa adsorbed on carbon has been found to be less than 50 mV in sulfuric acid and in a Nafion-based membrane electrode assembly (MEA). At the same time, this catalyst has shown no performance loss in a 60-hour durability test. The HER reaction mechanisms and the low onset overpotential in this system are revealed based on electrochemical study. Density functional theory (DFT) calculations suggest that the pyridyl-N functions as the active site for H adsorption with a free energy of -0.13 eV, in agreement with the unusually low onset overpotential for an organic molecular catalyst.<br>


2019 ◽  
Author(s):  
Xi Yin ◽  
Ling Lin ◽  
Hoon T. Chung ◽  
Ulises Martinez ◽  
Andrew M. Baker ◽  
...  

Finding a low-cost and stable electrocatalyst for hydrogen evolution reaction (HER) as a replacement for scarce and expensive precious metal catalysts has attracted significant interest from chemical and materials research communities. Here, we demonstrate an organic catalyst based on 2,2’-dipyridylamine (dpa) molecules adsorbed on carbon surface, which shows remarkable hydrogen evolution activity and performance durability in strongly acidic polymer electrolytes without involving any metal. The HER onset potential at dpa adsorbed on carbon has been found to be less than 50 mV in sulfuric acid and in a Nafion-based membrane electrode assembly (MEA). At the same time, this catalyst has shown no performance loss in a 60-hour durability test. The HER reaction mechanisms and the low onset overpotential in this system are revealed based on electrochemical study. Density functional theory (DFT) calculations suggest that the pyridyl-N functions as the active site for H adsorption with a free energy of -0.13 eV, in agreement with the unusually low onset overpotential for an organic molecular catalyst.<br>


2021 ◽  
pp. 138985
Author(s):  
Xuerui Yi ◽  
Xiaobo He ◽  
Fengxiang Yin ◽  
Guoru Li ◽  
Zhichun Li

Sign in / Sign up

Export Citation Format

Share Document