carbon surface
Recently Published Documents


TOTAL DOCUMENTS

870
(FIVE YEARS 205)

H-INDEX

55
(FIVE YEARS 7)

2021 ◽  
Vol 12 (4) ◽  
pp. 291-300
Author(s):  
P. P. Gorbyk ◽  
◽  
A. L. Petranovska ◽  
N. V. Kusyak ◽  
N. M. Korniichuk ◽  
...  

One of the most widely used antitumor chemotherapeutic drugs is “Cisplatin” (active substance - cis-diaminodichloroplatinum), the side effects of which are the cumulative ototoxic, nephrotoxic and neurotoxic effects. The use of drug carrier systems for targeted delivery and adsorbents for extraction, in particular magnetite-carbon nanocomposites, will minimize unwanted toxic effects without reducing the therapeutic effect of cisplatin. For this purpose, a nanocomposite (NCs) of Fe3O4/Al2O3/С with a carbon surface was synthesized, where a layer of alumina protects magnetite during the pyrolysis of carbohydrates. The synthesized samples were characterized by TEM, XRD, mass spectrometry methods, magnetic properties and specific surface area were studied. It has been found that the used heat treatment mode (T = 500 °С, argon medium) is sufficient for complete carbonization of sucrose and preserves the phase of magnetite which does not lead to deterioration of magnetic characteristics. The results of TEM studies and magnetic measurements indicate the formation of the Fe3O4/Al2O3/С nanocomposite of the core-shell type. The adsorption of Cisplatin on the surface of NCs Fe3O4/Al2O3/С was performed and the adsorption process dependent on the contact time, pH of the solution and cisplatin concentration was studied. The experimental results of kinetic studies were analyzed for compliance with the theoretical models of Boyd and Morris-Weber, models of pseudo-first and pseudo-second orders. Langmuir and Freundlich isotherm models were used to model adsorption processes. The limiting factor of adsorption is the external diffusion mass transfer processes, which correlates with the calculated parameters of the pseudo-first-order model (r2 = 0.985). The correlation of theoretical and practically obtained values of adsorption capacity indicates the possibility of using the Freundlich model to describe the adsorption of Cisplatin on the surface of Fe3O4/Al2O3/C.


2021 ◽  
Vol 22 (48) ◽  
pp. 25-30
Author(s):  
Narandalai Byamba-ochir ◽  
Nemekhbayar Davaadorj ◽  
Battseveen Buyankhishig ◽  
Enkhtuul Surenjav

Silver nanoparticles (AgNPs) and silver nanoparticles doped activated carbon (AC-Ag) composite materials were synthesized by hydrothermal processes in supercritical water conditions (29 MPa and 400 °C) using batch reactor. We studied the influence of the precursor solution concentration, reaction temperature under the hydrothermal conditions, and synthesis time on the properties of synthesized materials. The properties of plain AgNPs and AC-Ag composite materials synthesized in supercritical water, including crystallinity, particle size, and molecular interactions between AC and Ag were investigated, comprehensively. Compared to the plain AgNPs, the activated carbon-supported Ag nanocomposite was synthesized faster due to the active functional groups of activated carbon. Furthermore, the FTIR results reveal that the silver nanoparticles are attached to the activated carbon surface in the presence of oxygen bonded carbonyl and carboxyl groups. The nano-sized metal silver particles were observed on the AC surface when analyzed by TEM and XRD. All results imply that the supercritical water condition allows the formation of silver particles less than 100 nm either in the form of plain particles or deposited on the activated carbon surface using the silver acetate precursor solution. This environmentally benign supercritical hydrothermal process can replace the conventional method and become a novel synthesis method for preparing various new materials.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1524
Author(s):  
Seul-Yi Lee ◽  
Ji-Hye Park ◽  
Young-Jung Heo ◽  
Eun-Sang Lee ◽  
Soo-Jin Park

Significant efforts have been directed toward the identification of carbonaceous materials that can be utilized for hydrogen uptake in order to develop on-board automotive systems with a gravimetric capacity of 5.5 wt.%, thus meeting the U.S. Department of Energy technical targets. However, the capacity of hydrogen storage is limited by the weak interaction between hydrogen molecules and the carbon surface. Cigarette butts, which are the most abundant form of primary plastic waste, remain an intractable environmental pollution problem. To transform this source of waste into a valuable adsorbent for hydrogen uptake, we prepared several forms of oxygen-rich cigarette butt-derived porous carbon (CGB-AC, with the activation temperature range of 600 and 900 °C). Our experimental investigation revealed that the specific surface area increased from 600 to 700 °C and then decreased as the temperature rose to 900 °C. In contrast, the oxygen contents gradually decreased with increasing activation temperature. CGB-AC700 had the highest H2 excess uptake () of 8.54 wt.% at 77 K and 20 bar, which was much higher than that of porous carbon reported in the previous studies. We found that the dynamic interaction between the porosity and the oxygen content determined the hydrogen storage capacity. The underlying mechanisms proposed in the present study would be useful in the design of efficient hydrogen storage because they explain the interaction between positive carbonaceous materials and negative hydrogen molecules in quadrupole orbitals.


2021 ◽  
Vol 21 (23) ◽  
pp. 17453-17494
Author(s):  
Yohanna Villalobos ◽  
Peter J. Rayner ◽  
Jeremy D. Silver ◽  
Steven Thomas ◽  
Vanessa Haverd ◽  
...  

Abstract. In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) (land nadir and glint data, version 9) to estimate the Australian carbon surface fluxes for the year 2015. To perform this estimation, we used both a regional-scale atmospheric transport–dispersion model and a four-dimensional variational assimilation scheme. Our results suggest that Australia was a carbon sink of −0.41 ± 0.08 PgC yr−1 compared to the prior estimate 0.09 ± 0.20 PgC yr−1 (excluding fossil fuel emissions). Most of the carbon uptake occurred in northern Australia over the savanna ecotype and in the western region over areas with sparse vegetation. Analysis of the enhanced vegetation index (EVI) suggests that the majority of the carbon uptake over the savanna ecosystem was due to an increase of vegetation productivity (positive EVI anomalies) amplified by an anomalous increase of rainfall in summer. Further from this, a slight increase of carbon uptake in Western Australia over areas with sparse vegetation (the largest ecosystem in Australia) was noted due to increased land productivity in the area caused by positive rainfall anomalies. The stronger carbon uptake estimate in this ecosystem was partially due to the land surface model (CABLE-BIOS3) underestimating the gross primary productivity of the ecosystem. To evaluate the accuracy of our carbon flux estimates from OCO-2 retrievals, we compare our posterior concentration fields against the column-averaged carbon retrievals from the Total Carbon Column Observing Network (TCCON) and ground-based in situ monitoring sites located around our domain. The validation analysis against TCCON shows that our system is able to reduce bias mainly in the summer season. Comparison with surface in situ observations was less successful, particularly over oceanic monitoring sites that are strongly affected by oceanic fluxes and subject to less freedom by the inversion. For stations located far from the coast, the comparison with in situ data was more variable, suggesting difficulties matching the column-integrated and surface data by the inversion, most likely linked to model vertical transport. Comparison of our fluxes against the OCO-2 model intercomparison (MIP) was encouraging. The annual carbon uptake estimated by our inversion falls within the ensemble of the OCO-2 MIP global inversions and presents a similar seasonal pattern.


2021 ◽  
Vol 923 (1) ◽  
pp. 71
Author(s):  
Masashi Tsuge ◽  
Akira Kouchi ◽  
Naoki Watanabe

Abstract Hydrogen molecules have two nuclear spin isomers: ortho-H2 and para-H2. The ortho-to-para ratio (OPR) is known to affect chemical evolution as well as gas dynamics in space. Therefore, understanding the mechanism of OPR variation in astrophysical environments is important. In this work, the nuclear spin conversion (NSC) processes of H2 molecules on diamond-like carbon and graphite surfaces are investigated experimentally by employing temperature-programmed desorption and resonance-enhanced multiphoton ionization methods. For the diamond-like carbon surface, the NSC time constants were determined at temperatures of 10–18 K and from 3900 ± 800 s at 10 K to 750 ± 40 s at 18 K. Similar NSC time constants and temperature dependence were observed for a graphite surface, indicating that bonding motifs (sp3 or sp2 hybridization) have little effect on the NSC rates.


2021 ◽  
Author(s):  
Jeffrey Brooks ◽  
Tatyana Sizyuk ◽  
Gregory Sinclair ◽  
Ahmed Hassanein

2021 ◽  
Vol 2117 (1) ◽  
pp. 012031
Author(s):  
VA Setyowati ◽  
W Widiyastuti ◽  
S Nurkhamidah ◽  
N Saidatin ◽  
O Lukdyantoro

Abstract This study aims to explain the effect of variations in nitrogen and carbon composition of catalysts on electrochemical properties and physical characterization. The usage of non-precious metals supported by nitrogen-carbon is one alternative to reduce the amount of platinum as the innovation of energy materials. Iron is a transition metal that can increase catalytic activity with the addition of a nitrogen source. The polymerization process was carried out by chemical oxidative polymerization for 24 hours in an ice bath using aniline as N source. Optimization of nitrogen coating on the carbon surface is carried out by mixing carbon during polymerization. The mixing of iron precursor and N/C powder was carried out in an ultrasonic bath and continued with pyrolysis at a temperature of 700°C. Regarding Cyclic Voltammetry (CV) test, the Fe-N/C = 2/1 catalyst has the largest area and the highest current density. The presence of Fe2O3 is needed to improve the electrochemical properties compared to Fe3C compounds. The composition analysis showed that the Fe-N/C = 2/1 catalyst had the highest Fe content after pyrolysis. In addition, the Fe-N/C = 2/1 catalyst also had the highest nitrogen content which can form a nitrogen functional group from the pyrolysis process.


Sign in / Sign up

Export Citation Format

Share Document