Kaposi’s sarcoma-associated herpesvirus viral protein kinase interacts with RNA helicase a and regulates host gene expression

2010 ◽  
Vol 48 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Jae Eun Jong ◽  
Junsoo Park ◽  
Sunmi Kim ◽  
Taegun Seo
2019 ◽  
Vol 93 (12) ◽  
Author(s):  
William Rodriguez ◽  
Kumaraman Srivastav ◽  
Mandy Muller

ABSTRACTOne striking characteristic of certain herpesviruses is their ability to induce rapid and widespread RNA decay in order to gain access to host resources. This phenotype is induced by viral endoribonucleases, including SOX in Kaposi’s sarcoma-associated herpesvirus (KSHV), muSOX in murine gammaherpesvirus 68 (MHV68), BGLF5 in Epstein-Barr virus (EBV), and vhs in herpes simplex virus 1 (HSV-1). Here, we performed comparative transcriptome sequencing (RNA-seq) upon expression of these herpesviral endonucleases in order to characterize their effect on the host transcriptome. Consistent with previous reports, we found that approximately two-thirds of transcripts were downregulated in cells expressing any of these viral endonucleases. Among the transcripts spared from degradation, we uncovered a cluster of transcripts that systematically escaped degradation from all tested endonucleases. Among these escapees, we identified C19ORF66 and reveal that this transcript is protected from degradation by its 3′ untranslated region (UTR). We then show that C19ORF66 is a potent KSHV restriction factor by impeding early viral gene expression, suggesting that its ability to escape viral cleavage may be an important component of the host response to viral infection. Collectively, our comparative approach is a powerful tool to pinpoint key regulators of the viral-host interplay and led us to uncover a novel KSHV regulator.IMPORTANCEViruses are master regulators of the host gene expression machinery. This is crucial to promote viral infection and to dampen host immune responses. Many viruses, including herpesviruses, express RNases that reduce host gene expression through widespread mRNA decay. However, it emerged that some mRNAs escape this fate, although it has been difficult to determine whether these escaping transcripts benefit viral infection or instead participate in an antiviral mechanism. To tackle this question, we compared the effect of the herpesviral RNases on the human transcriptome and identified a cluster of transcripts consistently escaping degradation from all tested endonucleases. Among the protected mRNAs, we identified the transcript C19ORF66 and showed that it restricts Kaposi’s sarcoma-associated herpesvirus (KSHV) infection. Collectively, these results provide a framework to explore how the control of RNA fate in the context of viral-induced widespread mRNA degradation may influence the outcome of viral infection.


2016 ◽  
Vol 90 (13) ◽  
pp. 5953-5964 ◽  
Author(s):  
Denis Avey ◽  
Sarah Tepper ◽  
Benjamin Pifer ◽  
Amritpal Bahga ◽  
Hunter Williams ◽  
...  

ABSTRACTKaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis.


2006 ◽  
Vol 81 (3) ◽  
pp. 1072-1082 ◽  
Author(s):  
Yoshihiro Izumiya ◽  
Chie Izumiya ◽  
Albert Van Geelen ◽  
Don-Hong Wang ◽  
Kit S. Lam ◽  
...  

ABSTRACT The oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus, also identified as human herpesvirus 8, contains genes producing proteins that control transcription and influence cell signaling. Open reading frame 36 (ORF36) of this virus encodes a serine/threonine protein kinase, which is designated the viral protein kinase (vPK). Our recent efforts to elucidate the role of vPK in the viral life cycle have focused on identifying viral protein substrates and determining the effects of vPK-mediated phosphorylation on specific steps in viral replication. The vPK gene was transcribed into 4.2-kb and 3.6-kb mRNAs during the early and late phases of viral reactivation. vPK is colocalized with viral DNA replication/transcription compartments as marked by a polymerase processivity factor, and K-bZIP, a protein known to bind the viral DNA replication origin (Ori-Lyt) and to regulate viral transcription. The vPK physically associated with and strongly phosphorylated K-bZIP at threonine 111, a site also recognized by the cyclin-dependent kinase Cdk2. Both K-bZIP and vPK were corecruited to viral promoters targeted by K-bZIP as well as to the Ori-Lyt region. Phosphorylation of K-bZIP by vPK had a negative impact on K-bZIP transcription repression activity. The extent of posttranslational modification of K-bZIP by sumoylation, a process that influences its repression function, was decreased by vPK phosphorylation at threonine 111. Our data thus identify a new role of vPK as a modulator of viral transcription.


Virology ◽  
2011 ◽  
Vol 420 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Bryan C. Mounce ◽  
Fei Chin Tsan ◽  
Lindsay Droit ◽  
Sarah Kohler ◽  
Justin M. Reitsma ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhang-Wei Liu ◽  
Nan Zhao ◽  
Yin-Na Su ◽  
Shan-Shan Chen ◽  
Xin-Jian He

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document