scholarly journals Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX

Virology ◽  
2011 ◽  
Vol 420 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Bryan C. Mounce ◽  
Fei Chin Tsan ◽  
Lindsay Droit ◽  
Sarah Kohler ◽  
Justin M. Reitsma ◽  
...  
2002 ◽  
Vol 13 (10) ◽  
pp. 3720-3729 ◽  
Author(s):  
Maria Marino ◽  
Filippo Acconcia ◽  
Francesco Bresciani ◽  
Alessandro Weisz ◽  
Anna Trentalance

Estrogens induce cell proliferation in target tissues by stimulating progression through the G1 phase of the cell cycle. Activation of cyclin D1 gene expression is a critical feature of this hormonal action. The existence of rapid/nongenomic estradiol-regulated protein kinase C (PKC-α) and extracellular signal-regulated kinase (ERK) signal transduction pathways, their cross talk, and role played in DNA synthesis and cyclin D1 gene transcription have been studied herein in human hepatoma HepG2 cells. 17β-Estradiol was found to rapidly activate PKC-α translocation and ERK-2/mitogen-activated protein kinase phosphorylation in this cell line. These actions were independent of each other, preceding the increase of thymidine incorporation into DNA and cyclin D1expression, and did not involve DNA binding by estrogen receptor. The results obtained with specific inhibitors indicated that PKC-α pathway is necessary to mediate the estradiol-induced G1-S progression of HepG2 cells, but it does not exert any effect(s) on cyclin D1 gene expression. On the contrary, ERK-2 cascade was strongly involved in both G1-S progression and cyclin D1gene transcription. Deletion of its activating protein-1 responsive element motif resulted in attenuation of cyclin D1 promoter responsiveness to estrogen. These results indicate that estrogen-induced cyclin D1 transcription can occur in HepG2 cells independently of the transcriptional activity of estrogen receptor, sustaining the pivotal role played by nongenomic pathways of estrogen action in hormone-induced proliferation.


Viruses ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 35 ◽  
Author(s):  
Jens Milbradt ◽  
Eric Sonntag ◽  
Sabrina Wagner ◽  
Hanife Strojan ◽  
Christina Wangen ◽  
...  

2013 ◽  
Vol 87 (11) ◽  
pp. 6359-6376 ◽  
Author(s):  
D. Wang ◽  
G. Li ◽  
M. Schauflinger ◽  
C. C. Nguyen ◽  
E. D. Hall ◽  
...  

2014 ◽  
Vol 88 (11) ◽  
pp. 6047-6060 ◽  
Author(s):  
G. Li ◽  
M. Rak ◽  
C. C. Nguyen ◽  
M. Umashankar ◽  
F. D. Goodrum ◽  
...  

2001 ◽  
Vol 82 (6) ◽  
pp. 1439-1450 ◽  
Author(s):  
Manfred Marschall ◽  
Matthias Stein-Gerlach ◽  
Martina Freitag ◽  
Regina Kupfer ◽  
Miriam van den Bogaard ◽  
...  

The UL97-encoded protein kinase (pUL97) of human cytomegalovirus (HCMV) plays a critical role in the control of virus replication. Deletion of the UL97 gene results in a drastic reduction in the replication efficiency. Although the exact function of pUL97 remains unclear and its sensitivity to specific inhibitors is speculative, protein kinase inhibitors of the indolocarbazole class are effective inhibitors of cytomegalovirus. Based on the phosphorylation of ganciclovir (GCV), a novel quantification system for pUL97 kinase activity was established: the phosphorylated form of GCV exerts an easily quantifiable cytotoxic effect in transfected cells. Importantly, the addition of indolocarbazole compounds, Gö6976 and NGIC-I, which were highly effective at nanomolar concentrations while other protein kinase inhibitors were not, led to a significant reduction of pUL97 kinase activity. It was also demonstrated that a catalytically inactive mutant of pUL97, K355M, and a GCV-resistant mutant, M460I, were both negative for GCV phosphorylation, although protein phosphorylation remained detectable for the latter mutant. In vitro kinase assays were used to confirm the levels of pUL97-mediated phosphorylation recorded. To generate a tool for screening large numbers of putative inhibitors that preferentially interfere with GCV as well as protein phosphorylation, pUL97-expressing cell clones with stable pUL97 kinase activity were selected. This study demonstrates that certain indolocarbazole compounds are potent pUL97 inhibitors and, therefore, represent novel candidates for antiviral drugs that target viral protein kinase functions.


2003 ◽  
Vol 171 (12) ◽  
pp. 6733-6741 ◽  
Author(s):  
Derek D. Sloan ◽  
George Zahariadis ◽  
Christine M. Posavad ◽  
Nichlos T. Pate ◽  
Steven J. Kussick ◽  
...  

2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Xiaofan Li ◽  
Sergei V. Kozlov ◽  
Ayman El-Guindy ◽  
Sumita Bhaduri-McIntosh

ABSTRACTHerpesviruses are ubiquitous, and infection by some, like Epstein-Barr virus (EBV), is nearly universal. To persist, EBV must periodically switch from a latent to a replicative/lytic phase. This productive phase is responsible for most herpesvirus-associated diseases. EBV encodes a latency-to-lytic switch protein which, upon activation, sets off a vectorially constrained cascade of gene expression that results in production of infectious virus. While triggering expression of the switch protein ZEBRA is essential to lytic cycle entry, sustaining its expression is equally important to avoid premature termination of the lytic cascade. We report that the viral protein kinase (vPK), encoded by a gene that is kinetically downstream of the lytic switch, sustains expression of ZEBRA, amplifies the lytic cascade, increasing virus production, and, importantly, prevents the abortive lytic cycle. We find that vPK, through a noncanonical site phosphorylation, activates the cellular phosphatidylinositol 3-kinase-related kinase ATM to cause phosphorylation of the heterochromatin enforcer KAP1/TRIM28 even in the absence of EBV genomes or other EBV proteins. Phosphorylation of KAP1 renders it unable to restrain ZEBRA, thereby further derepressing and sustaining its expression to culminate in virus production. This partnership with a host kinase and a transcriptional corepressor enables retrograde regulation by vPK of ZEBRA, an observation that is counter to the unidirectional regulation of gene expression reminiscent of most DNA viruses.IMPORTANCEHerpesviruses infect nearly all humans and persist quiescently for the life of the host. These viruses intermittently activate into the lytic phase to produce infectious virus, thereby causing disease. To ensure that lytic activation is not prematurely terminated, expression of the virally encoded lytic switch protein needs to be sustained. In studying Epstein-Barr virus, one of the most prevalent human herpesviruses that also causes cancer, we have discovered that a viral kinase activated by the viral lytic switch protein partners with a cellular kinase to deactivate a silencer of the lytic switch protein, thereby providing a positive feedback loop to ensure successful completion of the viral productive phase. Our findings highlight key nodes of interaction between the host and virus that could be exploited to treat lytic phase-associated diseases by terminating the lytic phase or kill cancer cells harboring herpesviruses by accelerating the completion of the lytic cascade.


Sign in / Sign up

Export Citation Format

Share Document