An Indoor Navigation Service Robot System Based on Vibration Tactile Feedback

2017 ◽  
Vol 9 (3) ◽  
pp. 331-341 ◽  
Author(s):  
Huang Peng ◽  
Guangming Song ◽  
Jian You ◽  
Ying Zhang ◽  
Jie Lian
2021 ◽  
Author(s):  
Xintao Liu ◽  
Shahram Sattar ◽  
Songnian Li

Conventional ice navigation in the sea is manually operated by well-trained navigators, whose experiences are heavily relied upon to guarantee the ship’s safety. Despite the increasingly available ice data and information, little has been done to develop an automatic ice navigation support system to better guide ships in the sea. In this study, using the vector-formatted ice data and navigation codes in northern regions, we calculate ice numeral and divide sea area into two parts: continuous navigable area and the counterpart numerous separate unnavigable area. We generate Voronoi Diagrams for the obstacle areas and build a road network-like graph for connections in the sea. Based on such a network, we design and develop a geographic information system (GIS) package to automatically compute the safest-and-shortest routes for different types of ships between origin and destination (OD) pairs. A visibility tool, Isovist, is also implemented to help automatically identify safe navigable areas in emergency situations. The developed GIS package is shared online as an open source project called NavSpace, available for validation and extension, e.g., indoor navigation service. This work would promote the development of ice navigation support system and potentially enhance the safety of ice navigation in the Arctic sea.


2017 ◽  
Vol 9 (2) ◽  
pp. 3-10 ◽  
Author(s):  
Demetrios Zeinalipour-Yazti ◽  
Christos Laoudias

2013 ◽  
Vol 303-306 ◽  
pp. 2046-2049 ◽  
Author(s):  
Yi Hu ◽  
Lei Sheng ◽  
Shan Jun Zhang

The application of navigation, such as guidance of pedestrians, requires a certain accuracy of continuous outdoor and indoor positioning. In outdoor environments GPS system has proved to be effective. However in indoor it is challenging to control the accuracy within 2 to 3 meters. At present several approaches have been developed for indoor positioning, such as RFID. But they are mainly been implemented in professional areas, for general user such as tourists and visual incapable users it is difficult to take advantage of these technologies because of the high price of terminal and the navigation service covered area is extremely limited. In this paper, a new approach of indoor navigation method is proposed to solve the problems of traditional methods. It is based on INS and wifi positioning technology. As hardware, wifi receiver, smart phone built-in accelerometer and digital compass are selected and investigated. User’s indoor position is first estimated by dead reckoning method with INS navigation system and then be recalibrated by wifi position information. Several experiments performed in the test verified the effectiveness of this indoor continuous positioning method described in this paper.


Sign in / Sign up

Export Citation Format

Share Document