Correlation between lung volume changes measured by electrical impedance tomography and respiratory inductance plethysmography in high-frequency ventilated preterm infants

2013 ◽  
Vol 81 (S1) ◽  
pp. 30-30 ◽  
Author(s):  
P.S. van der Burg ◽  
M. Miedema ◽  
F.H.C. de Jongh ◽  
A.H.L.C. van Kaam
2019 ◽  
Vol 127 (3) ◽  
pp. 707-712
Author(s):  
Martijn Miedema ◽  
Andy Adler ◽  
Karen E. McCall ◽  
Elizabeth J. Perkins ◽  
Anton H. van Kaam ◽  
...  

Pneumothoraxes are common in preterm infants and are a major cause of morbidity. Early detection and treatment of pneumothoraxes are vital to minimize further respiratory compromise. Electrical impedance tomography (EIT) has been suggested as a method of rapidly detecting pneumothoraxes at the bedside. Our objective was to define the EIT-derived regional phase angle differences in filling characteristics before and during spontaneous pneumothoraxes in preterm lambs. Preterm lambs (124–127-day gestation) were ventilated with high-frequency oscillatory ventilation for 120 min. EIT data and cardiorespiratory parameters were monitored continuously and recorded for 3 min every 15 min. Six animals spontaneously developed a pneumothorax within a gravity-nondependent quadrant of the lung and were included for this analysis. Changes in end-expiratory lung impedance (EELI), ventilation, and phase angle delay were calculated in the four lung quadrants at the onset of the pneumothorax and 15 and 30 min prior. At the onset of the pneumothorax, all animals showed a clear increase in EELI in the affected lung quadrant. Fifteen and thirty minutes before the pneumothorax there was a significant phase angle delay between the nondependent and dependent lung. At 1 min before pneumothorax this phase angle delay was isolated just to the affected quadrant (nondependent). These findings are the first description of the events within the lung at initiation of a pneumothorax, demonstrating distinct predictive changes in air-filling characteristics before the occurrence of pneumothorax. This suggests that EIT may be able to accurately identify the onset of a pneumothorax. NEW & NOTEWORTHY In this article we describe for the first time predictive changes in electrical impedance tomography-based regional filling characteristics of the lung before the onset of a one-sided pneumothorax in six preterm lambs ventilated with high-frequency oscillatory ventilation. This can give clinicians bedside information to change treatment of preterm infants and prevent pneumothorax as life-threatening event from happening.


2014 ◽  
Vol 42 (6) ◽  
pp. 1524-1530 ◽  
Author(s):  
Pauline S. van der Burg ◽  
Martijn Miedema ◽  
Frans H. de Jongh ◽  
Inez Frerichs ◽  
Anton H. van Kaam

1998 ◽  
Vol 84 (2) ◽  
pp. 726-732 ◽  
Author(s):  
Andy Adler ◽  
Norihiro Shinozuka ◽  
Yves Berthiaume ◽  
Robert Guardo ◽  
Jason H. T. Bates

Adler, Andy, Norihiro Shinozuka, Yves Berthiaume, Robert Guardo, and Jason H. T. Bates. Electrical impedance tomography can monitor dynamic hyperinflation in dogs. J. Appl. Physiol. 84(2): 726–732, 1998.—We assessed in eight dogs the accuracy with which electrical impedance tomography (EIT) can monitor changes in lung volume by comparing the changes in mean lung conductivity obtained with EIT to changes in esophageal pressure (Pes) and to airway opening pressure (Pao) measured after airway occlusion. The average volume measurement errors were determined: 26 ml for EIT; 35 ml for Pao; and 54 ml for Pes. Subsequently, lung inflation due to applied positive end-expiratory pressure was measured by EIT (ΔVEIT) and Pao (ΔVPao) under both inflation and deflation conditions. Whereas ΔVPaowas equal under both conditions, ΔVEITwas 28 ml greater during deflation than inflation, indicating that EIT is sensitive to lung volume history. The average inflation ΔVEITwas 67.7 ± 78 ml greater than ΔVPao, for an average volume increase of 418 ml. Lung inflation due to external expiratory resistance was measured during ventilation by EIT (ΔVEIT,vent) and Pes (ΔVPes,vent) and at occlusion by EIT (ΔVEIT,occl), Pes, and Pao. The average differences between EIT estimates and ΔVEIT,occlwere 5.8 ± 44 ml for ΔVEIT,ventand 49.5 ± 34 ml for ΔVEIT,occl. The average volume increase for all dogs was 442.2 ml. These results show that EIT can provide usefully accurate estimates of changes in lung volume over an extended time period and that the technique has promise as a means of conveniently and noninvasively monitoring lung hyperinflation.


Sign in / Sign up

Export Citation Format

Share Document