regional lung
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 78)

H-INDEX

46
(FIVE YEARS 4)

Author(s):  
Adam Auckburally ◽  
Görel Nyman ◽  
Maja K. Wiklund ◽  
Anna K. Straube ◽  
Gaetano Perchiazzi ◽  
...  

Abstract OBJECTIVE To develop a method based on CT angiography and the maximum slope model (MSM) to measure regional lung perfusion in anesthetized ponies. ANIMALS 6 ponies. PROCEDURES Anesthetized ponies were positioned in dorsal recumbency in the CT gantry. Contrast was injected, and the lungs were imaged while ponies were breathing spontaneously and while they were mechanically ventilated. Two observers delineated regions of interest in aerated and atelectatic lung, and perfusion in those regions was calculated with the MSM. Measurements obtained with a computerized method were compared with manual measurements, and computerized measurements were compared with previously reported measurements obtained with microspheres. RESULTS Perfusion measurements obtained with the MSM were similar to previously reported values obtained with the microsphere method. While ponies were spontaneously breathing, mean ± SD perfusion for aerated and atelectatic lung regions were 4.0 ± 1.9 and 5.0 ± 1.2 mL/min/g of lung tissue, respectively. During mechanical ventilation, values were 4.6 ± 1.2 and 2.7 ± 0.7 mL/min/g of lung tissue at end expiration and 4.1 ± 0.5 and 2.7 ± 0.6 mL/min/g of lung tissue at peak inspiration. Intraobserver agreement was acceptable, but interobserver agreement was lower. Computerized measurements compared well with manual measurements. CLINICAL RELEVANCE Findings showed that CT angiography and the MSM could be used to measure regional lung perfusion in dorsally recumbent anesthetized ponies. Measurements are repeatable, suggesting that the method could be used to determine efficacy of therapeutic interventions to improve ventilation-perfusion matching and for other studies for which measurement of regional lung perfusion is necessary.


Author(s):  
Tobias H Becher ◽  
Martijn Miedema ◽  
Merja Kallio ◽  
Thalia Papadouri ◽  
Christina Karaoli ◽  
...  

2021 ◽  
Vol 10 (24) ◽  
pp. 5811
Author(s):  
Tony Jung ◽  
Neeraj Vij

First- and second-hand exposure to smoke or air pollutants is the primary cause of chronic obstructive pulmonary disease (COPD) pathogenesis, where genetic and age-related factors predispose the subject to the initiation and progression of obstructive lung disease. Briefly, airway inflammation, specifically bronchitis, initiates the lung disease, leading to difficulty in breathing (dyspnea) and coughing as initial symptoms, followed by air trapping and inhibition of the flow of air into the lungs due to damage to the alveoli (emphysema). In addition, mucus obstruction and impaired lung clearance mechanisms lead to recurring acute exacerbations causing progressive decline in lung function, eventually requiring lung transplant and other lifesaving interventions to prevent mortality. It is noteworthy that COPD is much more common in the population than currently diagnosed, as only 16 million adult Americans were reported to be diagnosed with COPD as of 2018, although an additional 14 million American adults were estimated to be suffering from COPD but undiagnosed by the current standard of care (SOC) diagnostic, namely the spirometry-based pulmonary function test (PFT). Thus, the main issue driving the adverse disease outcome and significant mortality for COPD is lack of timely diagnosis in the early stages of the disease. The current treatment regime for COPD emphysema is most effective when implemented early, on COPD onset, where alleviating symptoms and exacerbations with timely intervention(s) can prevent steep lung function decline(s) and disease progression to severe emphysema. Therefore, the key to efficiently combatting COPD relies on early detection. Thus, it is important to detect early regional pulmonary function and structural changes to monitor modest disease progression for implementing timely interventions and effectively eliminating emphysema progression. Currently, COPD diagnosis involves using techniques such as COPD screening questionnaires, PFT, arterial blood gas analysis, and/or lung imaging, but these modalities are limited in their capability for early diagnosis and real-time disease monitoring of regional lung function changes. Hence, promising emerging techniques, such as X-ray phase contrast, photoacoustic tomography, ultrasound computed tomography, electrical impedance tomography, the forced oscillation technique, and the impulse oscillometry system powered by robust artificial intelligence and machine learning analysis capability are emerging as novel solutions for early detection and real time monitoring of COPD progression for timely intervention. We discuss here the scope, risks, and limitations of current SOC and emerging COPD diagnostics, with perspective on novel diagnostics providing real time regional lung function monitoring, and predicting exacerbation and/or disease onset for prognosis-based timely intervention(s) to limit COPD–emphysema progression.


2021 ◽  
Author(s):  
Michal Otáhal ◽  
Mikuláš Mlček ◽  
João Batista Borges ◽  
Glasiele Cristina Alcala ◽  
Dominik Hladík ◽  
...  

Abstract Background: Real-time effects of changing body position and positive end-expiratory pressure (PEEP) on regional lung overdistension and collapse in individual patients remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP in supine and prone body positions seeking to reduce lung collapse and overdistension in mechanically ventilated patients with coronavirus disease (COVID-19)-induced acute respiratory distress syndrome (ARDS). We hypothesized that prone positioning with bedside titrated PEEP would provide attenuation of both overdistension and collapse.Methods: In this prospective observational study, patients with COVID-19-induced ARDS under mechanical ventilation were included. We used electrical impedance tomography (EIT) with decremental PEEP titration algorithm (PEEPEIT-titration), which provides information on regional lung overdistension and collapse, along with global respiratory system compliance, to individualize PEEP and body position. PEEPEIT-titration in supine position straightaway followed by PEEPEIT-titration in prone position were performed. Immediately before each PEEPEIT-titration, the same lung recruitment maneuver was performed: 2 min of PEEP 24 cmH2O and driving pressure of 15 cmH2O.Results: Forty-two PEEPEIT-titration were performed in ten patients (21 pairs supine and prone positions). We have found larger % of overdistension along the PEEP titration in prone than supine position (P = 0.042). A larger % of collapse along the PEEP titration was found in supine than prone position (P = 0.037). A smaller respiratory system compliance was found in prone than supine position (P < 0.0005).Conclusions: In patients with COVID-19-induced ARDS, prone body position, when compared with supine body position, decreased lung collapse at low PEEP levels, but increased lung overdistension at PEEP levels greater than 10 cm H2O.Trial registration number: NCT04460859


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6789
Author(s):  
Chang-Lin Hu ◽  
I-Cheng Cheng ◽  
Chih-Hsien Huang ◽  
Yu-Te Liao ◽  
Wei-Chieh Lin ◽  
...  

Electrical impedance tomography (EIT), a noninvasive and radiation-free medical imaging technique, has been used for continuous real-time regional lung aeration. However, adhesive electrodes could cause discomfort and increase the risk of skin injury during prolonged measurement. Additionally, the conductive gel between the electrodes and skin could evaporate in long-term usage and deteriorate the signal quality. To address these issues, in this work, textile electrodes integrated with a clothing belt are proposed to achieve EIT lung imaging along with a custom portable EIT system. The simulation and experimental results have verified the validity of the proposed portable EIT system. Furthermore, the imaging results of using the proposed textile electrodes were compared with commercial electrocardiogram electrodes to evaluate their performance.


Metabolomics ◽  
2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Sean J. Cooney ◽  
Jelena Klawitter ◽  
Ludmilla Khailova ◽  
Justin Robison ◽  
James Jaggers ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Christine Eimer ◽  
Katharina Freier ◽  
Norbert Weiler ◽  
Inéz Frerichs ◽  
Tobias Becher

Early mobilization has become an important aspect of treatment in intensive care medicine, especially in patients with acute pulmonary dysfunction. As its effects on regional lung physiology have not been fully explored, we conceived a prospective observational study (Registration number: DRKS00023076) investigating regional lung function during a 15-min session of early mobilization physiotherapy with a 30-min follow-up period. The study was conducted on 20 spontaneously breathing adult patients with impaired pulmonary gas exchange receiving routine physical therapy during their intensive care unit stay. Electrical impedance tomography (EIT) was applied to continuously monitor ventilation distribution and changes in lung aeration during mobilization and physical therapy. Baseline data was recorded in the supine position, the subjects were then transferred into the seated and partly standing position for physical therapy. Afterward, patients were transferred back into the initial position and followed up with EIT for 30 min. EIT data were analyzed to assess changes in dorsal fraction of ventilation (%dorsal), end-expiratory lung impedance normalized to tidal variation (ΔEELI), center of ventilation (CoV) and global inhomogeneity index (GI index).Follow-up was completed in 19 patients. During exercise, patients exhibited a significant change in ventilation distribution in favor of dorsal lung regions, which did not persist during follow-up. An identical effect was shown by CoV. ΔEELI increased significantly during follow-up. In conclusion, mobilization led to more dorsal ventilation distribution, but this effect subsided after returning to initial position. End-expiratory lung impedance increased during follow-up indicating a slow increase in end-expiratory lung volume following physical therapy.


Tomography ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 452-465
Author(s):  
Jaime Mata ◽  
Steven Guan ◽  
Kun Qing ◽  
Nicholas Tustison ◽  
Yun Shim ◽  
...  

Idiopathic pulmonary fibrosis, a pattern of interstitial lung disease, is often clinically unpredictable in its progression. This paper presents hyperpolarized Xenon-129 chemical shift imaging as a noninvasive, nonradioactive method of probing lung physiology as well as anatomy to monitor subtle changes in subjects with IPF. Twenty subjects, nine healthy and eleven IPF, underwent HP Xe-129 ventilation MRI and 3D-SBCSI. Spirometry was performed on all subjects before imaging, and DLCO and hematocrit were measured in IPF subjects after imaging. Images were post-processed in MATLAB and segmented using ANTs. IPF subjects exhibited, on average, higher Tissue/Gas ratios and lower RBC/Gas ratios compared with healthy subjects, and quantitative maps were more heterogeneous in IPF subjects. The higher ratios are likely due to fibrosis and thickening of the pulmonary interstitium. T2* relaxation was longer in IPF subjects and corresponded with hematocrit scores, although the mechanism is not well understood. A lower chemical shift in the red blood cell spectroscopic peak correlated well with a higher Tissue/RBC ratio and may be explained by reduced blood oxygenation. Tissue/RBC also correlated well, spatially, with areas of fibrosis in HRCT images. These results may help us understand the underlying mechanism behind gas exchange impairment and disease progression.


2021 ◽  
Vol 38 (9) ◽  
pp. 1601-1613
Author(s):  
Scott Tavernini ◽  
Dino J. Farina ◽  
Andrew R. Martin ◽  
Warren H. Finlay

2021 ◽  
Vol 12 ◽  
Author(s):  
Julien G. Cohen ◽  
Ludovic Broche ◽  
Mohammed Machichi ◽  
Gilbert R. Ferretti ◽  
Renaud Tamisier ◽  
...  

BackgroundNasal high flow (NHF) is a non-invasive breathing therapy that is based on the delivery via a large-caliber nasal cannula of heated and humidified air at flow rates that exceed peak inspiratory flow. It is thought that positive airway pressure generated by NHF can help reduce gas trapping and improve regional lung ventilation. There are no data to confirm this hypothesis at flow rates applicable in stable chronic obstructive pulmonary disease (COPD) patients.MethodsIn this study, we used non-rigid registration of computed tomography (CT) images acquired at maximal expiration and inspiration to compute regional lung attenuation changes (ΔHU), and lung displacement (LD), indices of regional lung ventilation. Parametric response maps (Galban et al., 2012) were also computed in each experimental condition. Eight COPD patients were assessed at baseline (BL) and after 5 min of NHF and expiratory resistive loading (ERL).ResultsΔHU was: BL (median, IQR): 85 (67.2, 102.8); NHF: 90.7 (57.4, 97.6); ERL: 74.6 (46.4, 89.6) HU (p = 0.531); and LD: 27.8 (22.3, 39.3); 17.6 (15.4, 27.9); and 20.4 (16.6, 23.6) mm (p = 0.120) in the 3 conditions, respectively. No significant difference in trapping was observed. Respiratory rate significantly decreased with both treatments [BL: 17.3 (16.4, 18.9); NHF: 13.7; ERL: 11.4 (9.6, 13.2) bpm; and p &lt; 0.001].ConclusionNeither NHF at 25 L/min nor ERL significantly improved the regional lung ventilation of stable COPD patients with gas trapping, based on functional lung CT imaging. Further study including more subjects is needed to assess the potential effect of NHF on regional lung function at higher flow rates.Clinical Trial Registrationwww.clinicaltrials.gov/under, identifier NCT03821311.


Sign in / Sign up

Export Citation Format

Share Document