Shear strength and pore-water pressure characteristics of sandy soil mixed with plastic fine

2012 ◽  
Vol 7 (3) ◽  
pp. 1049-1057 ◽  
Author(s):  
M. Bayat ◽  
E. Bayat ◽  
H. Aminpour ◽  
A. Salarpour
1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Mohammed Fattah ◽  
Mohammed Al-Neami ◽  
Nora Jajjawi

AbstractThe present research is concerned with predicting liquefaction potential and pore water pressure under the dynamic loading on fully saturated sandy soil using the finite element method by QUAKE/W computer program. As a case study, machine foundations on fully saturated sandy soil in different cases of soil densification (loose, medium and dense sand) are analyzed. Harmonic loading is used in a parametric study to investigate the effect of several parameters including: the amplitude frequency of the dynamic load. The equivalent linear elastic model is adopted to model the soil behaviour and eight node isoparametric elements are used to model the soil. Emphasis was made on zones at which liquefaction takes place, the pore water pressure and vertical displacements develop during liquefaction. The results showed that liquefaction and deformation develop fast with the increase of loading amplitude and frequency. Liquefaction zones increase with the increase of load frequency and amplitude. Tracing the propagation of liquefaction zones, one can notice that, liquefaction occurs first near the loading end and then develops faraway. The soil overburden pressure affects the soil liquefaction resistance at large depths. The liquefaction resistance and time for initial liquefaction increase with increasing depths. When the frequency changes from 5 to 10 rad/sec. (approximately from static to dynamic), the response in displacement and pore water pressure is very pronounced. This can be attributed to inertia effects. Further increase of frequency leads to smaller effect on displacement and pore water pressure. When the frequency is low; 5, 10 and 25 rad/sec., the oscillation of the displacement ends within the period of load application 60 sec., while when ω = 50 rad/sec., oscillation continues after this period.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5825-5830 ◽  
Author(s):  
ZHENGHUA XIAO ◽  
BO HAN ◽  
HONGJIAN LIAO ◽  
AKENJIANG TUOHUTI

A series of dynamic triaxial tests are performed on normal anisotropic consolidation and over anisotropic consolidation specimens of loess. Based on the test results, the variable regularity of dynamic shear stress, axial strain and pore water pressure of loess under dynamic loading are measured and analyzed. The influences of the dynamic shear strength and pore water pressure at different over consolidation ratio are analyzed. The relationship between dynamic shear strength and over consolidation ratio of loess is obtained. The evaluating standard of dynamic shear strength of loess is discussed. Meanwhile, how to determine the effective dynamic shear strength index of normal anisotropic consolidated loess is also discussed in this paper. Several obtained conclusions can be referenced for studying the dynamic shear strength of loess foundation.


2020 ◽  
Vol 195 ◽  
pp. 02028
Author(s):  
Tomoyoshi Nishimura ◽  
Masaaki Fukaya

Safety of great deep repository design has been investigated for high-level radioactive waste disposal system in several countries such as Belgium, Canada, China, France, Germany, Japan, Sweden and Switzerland. The repository of the disposal is in most cases based on the concept of a multi-barrier system using the host rock barrier formation and a man-made barrier formation. The man-made barrier consists of high expansive bentonite. Thermal-hydro-mechanical behaviour simulation models were developed, including some parameters described by experimental works. The complex phenomena due to the transition into saturation and chemical reactions at the bentonite barrier system have been explained. This study focused on direct shear strength for compacted bentonite related to some factors induced by uncertainty problems such as hydration effect and pore-water pressure. Measured shear strength properties of compacted bentonite had been determined at high suction values. Also, it is clear that there is some influence of direct shear speed on direct shear strength both under unsaturated-saturated conditions. A modified direct shear apparatus was used in this study to observe changes in shear strength with increments of pore-water pressures.


Sign in / Sign up

Export Citation Format

Share Document