Wave energy resource assessment with improved satellite altimetry data over the Malaysian coastal sea

2019 ◽  
Vol 12 (15) ◽  
Author(s):  
Nurul Hazrina Idris
2015 ◽  
Vol 42 (13) ◽  
pp. 5452-5459 ◽  
Author(s):  
Lonneke Goddijn-Murphy ◽  
Belén Martín Míguez ◽  
Jason McIlvenny ◽  
Philippe Gleizon

2014 ◽  
Vol 4 (1) ◽  
pp. 23-29
Author(s):  
Parluhutan Manurung ◽  
Robert R Leben ◽  
Stefano Vignudelli ◽  
Jonson Lumban Gaol ◽  
Benjamin Hamlington ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2070
Author(s):  
Ana Basañez ◽  
Vicente Pérez-Muñuzuri

Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independently.


2016 ◽  
Vol 35 (11) ◽  
pp. 28-34 ◽  
Author(s):  
Yongliang Duan ◽  
Hongwei Liu ◽  
Weidong Yu ◽  
Yijun Hou

2013 ◽  
Vol 55 ◽  
pp. 480-489 ◽  
Author(s):  
J.P. Sierra ◽  
D. González-Marco ◽  
J. Sospedra ◽  
X. Gironella ◽  
C. Mösso ◽  
...  

2008 ◽  
Vol 29 (21) ◽  
pp. 6417-6426 ◽  
Author(s):  
K. Ichikawa ◽  
R. Tokeshi ◽  
M. Kashima ◽  
K. Sato ◽  
T. Matsuoka ◽  
...  

Author(s):  
Ed Mackay ◽  
AbuBakr Bahaj ◽  
Chris Retzler ◽  
Peter Challenor

The use of altimeter measurements of significant wave height and energy period for quantifying wave energy resource is investigated. A new algorithm for calculating wave period from altimeter data, developed by the authors in previous work, is used to estimate the power generated by the Pelamis wave energy converter and compared to estimates from collocated buoy data. In offshore locations accurate estimates of monthly and annual mean power can be achieved by combining measurements from six altimeter missions. Furthermore, by averaging along sections of the altimeter ground track, we demonstrate that it is possible to gauge the spatial variability in nearshore areas, with a resolution of the order of 10 km. Although measurements along individual tracks are temporally sparse, with TOPEX/Poseidon and Jason on a 10 day repeat orbit, GFO 17 days, and ERS-2 and ENVISAT 35 days, the long record of altimeter measurements means that multi-year mean power from single tracks are of a useful accuracy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shanwei Liu ◽  
Yinlong Li ◽  
Qinting Sun ◽  
Jianhua Wan ◽  
Yue Jiao ◽  
...  

The purpose of this paper is to analyze the influence of satellite altimetry data accuracy on the marine gravity anomaly accuracy. The data of 12 altimetry satellites in the research area (5°N–23°N, 105°E–118°E) were selected. These data were classified into three groups: A, B, and C, according to the track density, the accuracy of the altimetry satellites, and the differences of self-crossover. Group A contains CryoSat-2, group B includes Geosat, ERS-1, ERS-2, and Envisat, and group C comprises T/P, Jason-1/2/3, HY-2A, SARAL, and Sentinel-3A. In Experiment I, the 5′×5′ marine gravity anomalies were obtained based on the data of groups A, B, and C, respectively. Compared with the shipborne gravity data, the root mean square error (RMSE) of groups A, B, and C was 4.59 mGal, 4.61 mGal, and 4.51 mGal, respectively. The results show that high-precision satellite altimetry data can improve the calculation accuracy of gravity anomaly, and the single satellite CryoSat-2 enables achieving the same effect of multi-satellite joint processing. In Experiment II, the 2′×2′ marine gravity anomalies were acquired based on the data of groups A, A + B, and A + C, respectively. The root mean square error of the above three groups was, respectively, 4.29 mGal, 4.30 mGal, and 4.21 mGal, and the outcomes show that when the spatial resolution is satisfied, adding redundant low-precision altimetry data will add pressure to the calculation of marine gravity anomalies and will not improve the accuracy. An effective combination of multi-satellite data can improve the accuracy and spatial resolution of the marine gravity anomaly inversion.


Sign in / Sign up

Export Citation Format

Share Document