2D numerical modeling of two dam-break flood model studies in an urban locality

2020 ◽  
Vol 13 (14) ◽  
Author(s):  
Sajjad Haider ◽  
Umer Saeed ◽  
Muhammad Shahid
2000 ◽  
Vol 279 (2) ◽  
pp. H594-H600 ◽  
Author(s):  
Michael S. Firstenberg ◽  
Neil L. Greenberg ◽  
Nicholas G. Smedira ◽  
David L. Prior ◽  
Gregory M. Scalia ◽  
...  

The simplified Bernoulli equation relates fluid convective energy derived from flow velocities to a pressure gradient and is commonly used in clinical echocardiography to determine pressure differences across stenotic orifices. Its application to pulmonary venous flow has not been described in humans. Twelve patients undergoing cardiac surgery had simultaneous high-fidelity pulmonary venous and left atrial pressure measurements and pulmonary venous pulsed Doppler echocardiography performed. Convective gradients for the systolic (S), diastolic (D), and atrial reversal (AR) phases of pulmonary venous flow were determined using the simplified Bernoulli equation and correlated with measured actual pressure differences. A linear relationship was observed between the convective ( y) and actual ( x) pressure differences for the S ( y = 0.23 x + 0.0074, r = 0.82) and D ( y = 0.22 x + 0.092, r = 0.81) waves, but not for the AR wave ( y = 0.030 x + 0.13, r = 0.10). Numerical modeling resulted in similar slopes for the S ( y = 0.200 x − 0.127, r = 0.97), D ( y = 0.247 x − 0.354, r= 0.99), and AR ( y = 0.087 x − 0.083, r = 0.96) waves. Consistent with numerical modeling, the convective term strongly correlates with but significantly underestimates actual gradient because of large inertial forces.


2019 ◽  
Author(s):  
WENJUN LIU ◽  
BO WANG ◽  
HANG WANG ◽  
JIANMIN ZHANG ◽  
YUNLIANG CHEN ◽  
...  

2020 ◽  
pp. 125645
Author(s):  
Farhad Bahmanpouri ◽  
Mohammad Daliri ◽  
Alireza Khoshkonesh ◽  
Masoud Montazeri Namin ◽  
Mariano Buccino

Trudy NAMI ◽  
2022 ◽  
pp. 41-52
Author(s):  
A. V. Kozlov ◽  
V. A. Fedorov ◽  
K. V. Milov

Introduction (problem statement and relevance). The object of research in this work is an inline six-cylinder gas engine 6ChN13/15 with a Miller thermodynamic cycle. On the basis of its computer model studies minimization of the specific effective fuel consumption has been reached due to variation study of gas distribution and air supply systems parameters.The purpose of the study was to investigate the parameters regulation effect of gas distribution and air supply systems on the performance of a 6ChN13/15 gas engine with a Miller cycle on the external speed characteristic basing on numerical modeling.Methodology and research methods. The research was carried out by the method of computer simulation. Numerical modeling was made on the basis of data obtained during a full-scale experiment of a 6ChN13/15 gas engine with Miller thermodynamic cycle.Scientific novelty and results. A comparative analysis of a gas engine optimization results has been carried out. The results obtained will be used to create a gas engine and its further optimization by controlling the working process and the air supply system.Practical significance. The results obtained may be of interest to truck car manufacturers and engine specialists.


2015 ◽  
Vol 60 (1) ◽  
pp. 215-220 ◽  
Author(s):  
M. Warzecha ◽  
T. Merder ◽  
P. Warzecha

AbstractThe liquid steel flow structure in the tundish has a very substantial effect on the quality of the final product and on efficient casting conditions. Numerous model studies are being carried out to explain the effect of the tundish working conditions on casting processes.It is necessary to analyze the structure of liquid steel flow, which is strongly supported with numerical modeling. In numerical modeling, a choice of a proper turbulence model is crucial as it has a great impact on the flow structure of the fluid in the analyzed test facility. So far most numerical simulations has been done using RANS method (Reynolds-averaged Navier-Stokes equations) but in that case one get information about the averaged values of the turbulent flow. In presented study, numerical simulations using large eddy simulations (LES) method were used and compared to RANS results. In both cases, numerical simulations are carried out with the finite-volume commercial code AnsysFluent.


2004 ◽  
Vol 42 (2) ◽  
pp. 183-195 ◽  
Author(s):  
Takaaki Shigematsu ◽  
Philip L.-F. Liu ◽  
Kazuki Oda
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document