scholarly journals Investigation of the Flow Structure in the Tundish with the Use of Rans and Les Methods

2015 ◽  
Vol 60 (1) ◽  
pp. 215-220 ◽  
Author(s):  
M. Warzecha ◽  
T. Merder ◽  
P. Warzecha

AbstractThe liquid steel flow structure in the tundish has a very substantial effect on the quality of the final product and on efficient casting conditions. Numerous model studies are being carried out to explain the effect of the tundish working conditions on casting processes.It is necessary to analyze the structure of liquid steel flow, which is strongly supported with numerical modeling. In numerical modeling, a choice of a proper turbulence model is crucial as it has a great impact on the flow structure of the fluid in the analyzed test facility. So far most numerical simulations has been done using RANS method (Reynolds-averaged Navier-Stokes equations) but in that case one get information about the averaged values of the turbulent flow. In presented study, numerical simulations using large eddy simulations (LES) method were used and compared to RANS results. In both cases, numerical simulations are carried out with the finite-volume commercial code AnsysFluent.

2014 ◽  
Vol 59 (3) ◽  
pp. 887-892 ◽  
Author(s):  
T. Merder

Abstract In industrial conditions there are situations when the CC machine works under emergency. It can be result of mechanical or electrical causes, breakout of billet or problem with supplying new parts of liquid steel to the CC machine. As a consequence one or two outlets of the tundish should be closed. However, closing one of the outlets influences the hydrodynamic and thermal conditions occurring in the tundish. Thus, the important information is which of the outlets should be closed to conduct further continuous casting process correctly.The following research was conducted to analyze the influence of liquid steel flow behaviour in the multi-strand tundish when all outlets do not work. Such problem was solved by means of numerical methods based on Navier-Stokes equations (k–ɛ standard turbulence model). Numerical simulations were done using the educational version of CFD program (Computational Fluid Dynamics) – ANSYSFluent. As a result forecasted velocity fields and RTD curves (Residence Time Distribution) were obtained. RTD characteristics were used to determine kinetics of liquid steel mixing and also to calculate parts of particular flow areas for studied cases.


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Author(s):  
J.-S. Zhang ◽  
Y. Zhang ◽  
C. Zhang ◽  
D.-S. Jeng

In this paper, a numerical model is developed to study the dynamic response of a porous seabed to combined wave-current loadings. While the Reynolds-averaged Navier–Stokes equations with k-ε turbulence closure scheme and internal wave-maker function are solved for the phenomenon of wave-current interaction, Biot's poro-elastic “u-p” model is adopted for the seabed response. After validated by the laboratory measurements, this model is applied for the investigation of the effects of waves and currents on the wave-current induced pore pressures. Furthermore, the effects of currents on maximum liquefaction depths of a porous seabed is examined, and it is concluded that the opposite currents will increase the liquefaction depth up to 30% of that without currents.


2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


2000 ◽  
Vol 122 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Karl W. Schulz ◽  
Yannis Kallinderis

A generalized numerical method for solution of the incompressible Navier-Stokes equations in three-dimensions has been developed. This solution methodology allows for the accurate prediction of the hydrodynamic loads on offshore structures, which is then combined with a rigid body structural response to address the flow-structure coupling which is often present in offshore applications. Validation results using this method are first presented for fixed structures which compare the drag coefficients of sphere and cylinder geometries to experimental measurements over a range of subcritical Reynolds numbers. Additional fixed structure results are then presented which explore the influence of aspect ratio effects on the lift and drag coefficients of a bare circular cylinder. Finally, the spanwise flow variations between a fixed and freely vibrating cylindrical structure are compared to demonstrate the ability of the flow-structure method to correctly predict correlation length increases for a vibrating structure. [S0892-7219(00)00904-3]


Author(s):  
Djordje Romanic ◽  
Horia Hangan

Analytical and semi-empirical models are inexpensive to run and can complement experimental and numerical simulations for risk analysis-related applications. Some models are developed by employing simplifying assumptions in the Navier-Stokes equations and searching for exact, but many times inviscid solutions occasionally complemented by boundary layer equations to take surface effects into account. Other use simple superposition of generic, canonical flows for which the individual solutions are known. These solutions are then ensembled together by empirical or semi-empirical fitting procedures. Few models address turbulent or fluctuating flow fields, and all models have a series of constants that are fitted against experiments or numerical simulations. This chapter presents the main models used to provide primarily mean flow solutions for tornadoes and downbursts. The models are organized based on the adopted solution techniques, with an emphasis on their assumptions and validity.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Alexander Kuzmin

AbstractTransonic flow past a Whitcomb airfoil and two modifications of it at Reynolds numbers of the order of ten millions is studied. The numerical modeling is based on the system of Reynolds-averaged Navier-Stokes equations. The flow simulations show that variations of the lift coefficient versus the angle of attack become more abrupt with decreasing curvature of the airfoil in the midchord region. This is caused by an instability of closely spaced local supersonic regions on the upper surface of the airfoil.


Sign in / Sign up

Export Citation Format

Share Document